

Available online at www.sciencedirect.com

SciVerse ScienceDirect

indagationes mathematicae

Indagationes Mathematicae 23 (2012) 269-299

www.elsevier.com/locate/indag

The prime-pair conjectures of Hardy and Littlewood

J. Korevaar

KdV Institute for Mathematics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, PO Box 94248, 1090 GE Amsterdam, Netherlands

Received 25 October 2011; accepted 9 December 2011

Communicated by F. Beukers

Abstract

By (extended) Wiener–Ikehara theory, the prime-pair conjectures are equivalent to simple pole-type boundary behavior of corresponding Dirichlet series. Under a weak Riemann-type hypothesis, the boundary behavior of weighted sums of the Dirichlet series can be expressed in terms of the behavior of certain double sums $\Sigma_{2k}^*(s)$. The latter involve the complex zeros of $\zeta(s)$ and depend in an essential way on their differences. Extended prime-pair conjectures are true if and only if the sums $\Sigma_{2k}^*(s)$ have good boundary behavior. Equivalently, a more general sum $\Sigma_{\omega}^*(s)$ (with real $\omega > 0$) should have a boundary function (or distribution) that is well-behaved, apart from a pole $R(\omega)/(s - 1/2)$ with residue $R(\omega)$ of period 2. $[R(\omega)$ could be determined for $\omega \le 2$.]

© 2011 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Prime-pair conjecture; Wiener-Ikehara theorem; Zeta zeros

1. Introduction

Most mathematicians believe that there are infinitely many *prime twins* (p, p + 2), although this has not been proved. In fact, there is strong numerical support for the prime-pair conjectures ("PPC's") *B* and *D* of Hardy and Littlewood [12]. Conjecture *B* asserts that the number $\pi_{2r}(x)$ of prime pairs (p, p + 2r) with $p \le x$ satisfies the asymptotic relation

$$\pi_{2r}(x) \sim 2C_{2r} \operatorname{li}_2(x) = 2C_{2r} \int_2^x \frac{dt}{\log^2 t} \sim 2C_{2r} \frac{x}{\log^2 x}$$
(1.1)

E-mail address: J.Korevaar@uva.nl.

^{0019-3577/\$ -} see front matter © 2011 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved. doi:10.1016/j.indag.2011.12.001

prprs $\setminus x$	10 ³	10^{4}	10 ⁵	10 ⁶	10 ⁷	10 ⁸	C_{2jr}/C_2
(p, p+2)	35	205	1224	8 1 6 9	58 980	440 312	1
(p, p+4)	41	203	1216	8 1 4 4	58 622	440 258	1
(p, p+6)	74	411	2447	16386	117 207	879 908	2
(p, p+8)	38	208	1260	8 2 4 2	58 595	439 908	1
(p, p+10)	51	270	1624	10934	78 21 1	586811	4/3
(p, p + 12)	70	404	2421	16378	117 486	880 196	2
(p, p + 14)	48	245	1488	9878	70463	528 095	6/5
(p, p + 16)	39	200	1233	8210	58 606	441 055	1
(p, p + 30)	99	536	3329	21990	156517	1 173 934	8/3
(p, p + 210)	107	641	3928	26178	187731	1 409 150	16/5
(p, 3p + 2)	64	352		15136		828 477	2
(p, 3p - 2)	64	362		15 007		826250	2
(p, 9p + 2)	57	342		14 003		780760	2
(p, 9p - 2)	52	310		13 928		781 433	2
$L_2(x)$:	46	214	1249	8 2 4 8	58754	440 368	

Table 1 Counting prime pairs $(p, jp \pm 2r)$ with $p \le x$.

as $x \to \infty$. Here

$$C_2 = \prod_{p>2 \text{ prime}} \left\{ 1 - \frac{1}{(p-1)^2} \right\} \approx 0.6601618,$$
(1.2)

and

$$C_{2r} = C_2 \prod_{q>2 \text{ prime; } q \mid r} \frac{q-1}{q-2}.$$
 (1.3)

Thus, for example, $C_4 = C_8 = C_2$, $C_6 = 2C_2$, $C_{10} = (4/3)C_2$. We mention the curious fact that the prime-pair constants C_{2r} have *mean value* 1. Bombieri and Davenport [4], and later, Fried-lander and Goldston [8], gave precise estimates; Tenenbaum [26] recently found a simple proof.

On the Internet one finds counts of twin primes for p up to 10^{16} by Nicely [22]. In Amsterdam, prime pairs (p, p + 2r) have been counted by Fokko van de Bult [29] and Herman te Riele [21]; the latter has also counted certain prime pairs $(p, jp \pm 2r)$ [23]. Table 1 shows a very small part of their work; the bottom line shows (rounded) values $L_2(x)$ of the comparison function $2C_2 li_2(x)$. Tables support the strong conjecture that for every r and $\varepsilon > 0$,

$$\pi_{2r}(x) - 2C_{2r} \mathrm{li}_2(x) = \mathcal{O}\left\{x^{(1/2) + \varepsilon}\right\}.$$
(1.4)

[The corresponding conjecture for $\pi(x)$, the number of primes $p \le x$, is equivalent to Riemann's Hypothesis (RH).]

Among other things, the Hardy–Littlewood Conjecture D deals with prime pairs $(p, jp \pm 2r)$, where *j* is *prime* to 2*r*. The corresponding counting functions $\pi_{j,\pm 2r}(x)$ for pairs with $p \le x$ should be roughly comparable to $2C_{2jr} \operatorname{li}_2(x)$, but see (1.8). Conjectures by later authors involved still more general prime pairs; we mention Schinzel and Sierpinski [25], Bateman and Horn [2,3] and Schinzel [24]; cf. also the survey by Hindry and Rivoal [15].

It is a classical result of Brun [5], obtained by applying what is now called Brun's sieve, that $\pi_2(x) = O(x/\log^2 x)$. Using more advanced sieves, Jie Wu [33] has shown that $\pi_2(x) < 6.8 C_2 x/\log^2 x$ for all sufficiently large x. There are related results for prime pairs $(p, jp \pm 2r)$.

Download English Version:

https://daneshyari.com/en/article/4673008

Download Persian Version:

https://daneshyari.com/article/4673008

Daneshyari.com