The prime-pair conjectures of Hardy and Littlewood
 J. Korevaar

KdV Institute for Mathematics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, PO Box 94248, 1090 GE Amsterdam, Netherlands

Received 25 October 2011; accepted 9 December 2011

Communicated by F. Beukers

Abstract

By (extended) Wiener-Ikehara theory, the prime-pair conjectures are equivalent to simple pole-type boundary behavior of corresponding Dirichlet series. Under a weak Riemann-type hypothesis, the boundary behavior of weighted sums of the Dirichlet series can be expressed in terms of the behavior of certain double sums $\Sigma_{2 k}^{*}(s)$. The latter involve the complex zeros of $\zeta(s)$ and depend in an essential way on their differences. Extended prime-pair conjectures are true if and only if the sums $\Sigma_{2 k}^{*}(s)$ have good boundary behavior. Equivalently, a more general sum $\Sigma_{\omega}^{*}(s)$ (with real $\omega>0$) should have a boundary function (or distribution) that is well-behaved, apart from a pole $R(\omega) /(s-1 / 2)$ with residue $R(\omega)$ of period 2 . [$R(\omega)$ could be determined for $\omega \leq 2$.] © 2011 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Prime-pair conjecture; Wiener-Ikehara theorem; Zeta zeros

1. Introduction

Most mathematicians believe that there are infinitely many prime twins ($p, p+2$), although this has not been proved. In fact, there is strong numerical support for the prime-pair conjectures ("PPC's") B and D of Hardy and Littlewood [12]. Conjecture B asserts that the number $\pi_{2 r}(x)$ of prime pairs ($p, p+2 r$) with $p \leq x$ satisfies the asymptotic relation

$$
\begin{equation*}
\pi_{2 r}(x) \sim 2 C_{2 r} \lim _{2}(x)=2 C_{2 r} \int_{2}^{x} \frac{d t}{\log ^{2} t} \sim 2 C_{2 r} \frac{x}{\log ^{2} x} \tag{1.1}
\end{equation*}
$$

[^0]Table 1
Counting prime pairs ($p, j p \pm 2 r$) with $p \leq x$.

prprs $\backslash x$	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}	$C_{2 j r} / C_{2}$
$(p, p+2)$	35	205	1224	8169	58980	440312	1
$(p, p+4)$	41	203	1216	8144	58622	440258	1
$(p, p+6)$	74	411	2447	16386	117207	879908	2
$(p, p+8)$	38	208	1260	8242	58595	439908	1
$(p, p+10)$	51	270	1624	10934	78211	586811	$4 / 3$
$(p, p+12)$	70	404	2421	16378	117486	880196	2
$(p, p+14)$	48	245	1488	9878	70463	528095	$6 / 5$
$(p, p+16)$	39	200	1233	8210	58606	441055	1
$(p, p+30)$	99	536	3329	21990	156517	1173934	$8 / 3$
$(p, p+210)$	107	641	3928	26178	187731	1409150	$16 / 5$
$(p, 3 p+2)$	64	352		15136		828477	2
$(p, 3 p-2)$	64	362		15007		826250	2
$(p, 9 p+2)$	57	342		14003		780760	2
$(p, 9 p-2)$	52	310		13928		781433	2
$L_{2}(x):$	46	214	1249	8248	58754	440368	

as $x \rightarrow \infty$. Here

$$
\begin{equation*}
C_{2}=\prod_{p>2}\left\{1-\frac{1}{(p-1)^{2}}\right\} \approx 0.6601618 \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{2 r}=C_{2} \prod_{q>2 \text { prime; } q \mid r} \frac{q-1}{q-2} . \tag{1.3}
\end{equation*}
$$

Thus, for example, $C_{4}=C_{8}=C_{2}, C_{6}=2 C_{2}, C_{10}=(4 / 3) C_{2}$. We mention the curious fact that the prime-pair constants $C_{2 r}$ have mean value 1. Bombieri and Davenport [4], and later, Friedlander and Goldston [8], gave precise estimates; Tenenbaum [26] recently found a simple proof.

On the Internet one finds counts of twin primes for p up to 10^{16} by Nicely [22]. In Amsterdam, prime pairs ($p, p+2 r$) have been counted by Fokko van de Bult [29] and Herman te Riele [21]; the latter has also counted certain prime pairs $(p, j p \pm 2 r)$ [23]. Table 1 shows a very small part of their work; the bottom line shows (rounded) values $L_{2}(x)$ of the comparison function $2 C_{2} \mathrm{li}_{2}(x)$. Tables support the strong conjecture that for every r and $\varepsilon>0$,

$$
\begin{equation*}
\pi_{2 r}(x)-2 C_{2 r} \mathrm{li}_{2}(x)=\mathcal{O}\left\{x^{(1 / 2)+\varepsilon}\right\} . \tag{1.4}
\end{equation*}
$$

[The corresponding conjecture for $\pi(x)$, the number of primes $p \leq x$, is equivalent to Riemann's Hypothesis (RH).]

Among other things, the Hardy-Littlewood Conjecture D deals with prime pairs ($p, j p \pm 2 r$), where j is prime to $2 r$. The corresponding counting functions $\pi_{j, \pm 2 r}(x)$ for pairs with $p \leq x$ should be roughly comparable to $2 C_{2 j r} \mathrm{li}_{2}(x)$, but see (1.8). Conjectures by later authors involved still more general prime pairs; we mention Schinzel and Sierpinski [25], Bateman and Horn [2,3] and Schinzel [24]; cf. also the survey by Hindry and Rivoal [15].

It is a classical result of Brun [5], obtained by applying what is now called Brun's sieve, that $\pi_{2}(x)=\mathcal{O}\left(x / \log ^{2} x\right)$. Using more advanced sieves, Jie Wu [33] has shown that $\pi_{2}(x)<$ $6.8 C_{2} x / \log ^{2} x$ for all sufficiently large x. There are related results for prime pairs ($p, j p \pm 2 r$).

https://daneshyari.com/en/article/4673008

Download Persian Version:
https://daneshyari.com/article/4673008

Daneshyari.com

[^0]: E-mail address: J.Korevaar@uva.nl.
 0019-3577/\$ - see front matter © 2011 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
 doi:10.1016/j.indag.2011.12.001

