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Abstract

By (extended) Wiener–Ikehara theory, the prime-pair conjectures are equivalent to simple pole-type
boundary behavior of corresponding Dirichlet series. Under a weak Riemann-type hypothesis, the boundary
behavior of weighted sums of the Dirichlet series can be expressed in terms of the behavior of certain
double sums Σ∗

2k(s). The latter involve the complex zeros of ζ(s) and depend in an essential way on their
differences. Extended prime-pair conjectures are true if and only if the sums Σ∗

2k(s) have good boundary
behavior. Equivalently, a more general sum Σ∗

ω(s) (with real ω > 0) should have a boundary function (or
distribution) that is well-behaved, apart from a pole R(ω)/(s − 1/2) with residue R(ω) of period 2. [R(ω)
could be determined for ω ≤ 2.]
c⃝ 2011 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Prime-pair conjecture; Wiener–Ikehara theorem; Zeta zeros

1. Introduction

Most mathematicians believe that there are infinitely many prime twins (p, p + 2), although
this has not been proved. In fact, there is strong numerical support for the prime-pair conjectures
(“PPC’s”) B and D of Hardy and Littlewood [12]. Conjecture B asserts that the number π2r (x)
of prime pairs (p, p + 2r) with p ≤ x satisfies the asymptotic relation

π2r (x) ∼ 2C2r li2(x) = 2C2r

 x

2

dt

log2 t
∼ 2C2r

x

log2 x
(1.1)
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Table 1
Counting prime pairs (p, j p ± 2r) with p ≤ x .

prprs \ x 103 104 105 106 107 108 C2 jr /C2

(p, p + 2) 35 205 1224 8 169 58 980 440 312 1
(p, p + 4) 41 203 1216 8 144 58 622 440 258 1
(p, p + 6) 74 411 2447 16 386 117 207 879 908 2
(p, p + 8) 38 208 1260 8 242 58 595 439 908 1
(p, p + 10) 51 270 1624 10 934 78 211 586 811 4/3
(p, p + 12) 70 404 2421 16 378 117 486 880 196 2
(p, p + 14) 48 245 1488 9 878 70 463 528 095 6/5
(p, p + 16) 39 200 1233 8 210 58 606 441 055 1
(p, p + 30) 99 536 3329 21 990 156 517 1 173 934 8/3
(p, p + 210) 107 641 3928 26 178 187 731 1 409 150 16/5
(p, 3p + 2) 64 352 15 136 828 477 2
(p, 3p − 2) 64 362 15 007 826 250 2
(p, 9p + 2) 57 342 14 003 780 760 2
(p, 9p − 2) 52 310 13 928 781 433 2

L2(x): 46 214 1249 8 248 58 754 440 368

as x → ∞. Here

C2 =


p>2 prime


1 −

1

(p − 1)2


≈ 0.6601618, (1.2)

and

C2r = C2


q>2 prime; q|r

q − 1
q − 2

. (1.3)

Thus, for example, C4 = C8 = C2,C6 = 2C2,C10 = (4/3)C2. We mention the curious fact that
the prime-pair constants C2r have mean value 1. Bombieri and Davenport [4], and later, Fried-
lander and Goldston [8], gave precise estimates; Tenenbaum [26] recently found a simple proof.

On the Internet one finds counts of twin primes for p up to 1016 by Nicely [22]. In Amsterdam,
prime pairs (p, p + 2r) have been counted by Fokko van de Bult [29] and Herman te Riele [21];
the latter has also counted certain prime pairs (p, j p ± 2r) [23]. Table 1 shows a very small
part of their work; the bottom line shows (rounded) values L2(x) of the comparison function
2C2li2(x). Tables support the strong conjecture that for every r and ε > 0,

π2r (x)− 2C2r li2(x) = O


x (1/2)+ε

. (1.4)

[The corresponding conjecture for π(x), the number of primes p ≤ x , is equivalent to Riemann’s
Hypothesis (RH).]

Among other things, the Hardy–Littlewood Conjecture D deals with prime pairs (p, j p ±2r),
where j is prime to 2r . The corresponding counting functions π j,±2r (x) for pairs with p ≤ x
should be roughly comparable to 2C2 jr li2(x), but see (1.8). Conjectures by later authors involved
still more general prime pairs; we mention Schinzel and Sierpinski [25], Bateman and Horn
[2,3] and Schinzel [24]; cf. also the survey by Hindry and Rivoal [15].

It is a classical result of Brun [5], obtained by applying what is now called Brun’s sieve,
that π2(x) = O(x/ log2 x). Using more advanced sieves, Jie Wu [33] has shown that π2(x) <
6.8 C2 x/ log2 x for all sufficiently large x . There are related results for prime pairs (p, j p ± 2r).
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