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Abstract

Following on from the work of Bridges and Hendtlass (2010) [5], we provide geometric conditions under
which the minimal period of a continuous periodic homomorphism from R onto a nontrivial metric abelian
group contained in Rn can be constructed within the framework of Bishop’s constructive mathematics.
c⃝ 2012 Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
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In this paper we consider the classically vacuous problem of finding the minimal period of a
continuous periodic homomorphism from R onto a nontrivial complete abelian group G within
the framework of Bishop’s constructive mathematics (BISH).1 Let θ be a homomorphism with
domain R. We say that θ is periodic if there exists τ > 0, a period of θ , such that θ(τ ) = 0G ,
where 0G denotes the identity element of G; if also θ(t) is apart from 0G – denoted as θ(t) ≠ 0G
– for each t ∈ (0, τ ), then we call τ the minimal period of θ . We denote the minimal period of
a homomorphism by τmin. In [5] it was shown that given a continuous periodic homomorphism
from R onto a nontrivial compact metric abelian group, we cannot, in general, find the minimal
period, even when we adopt a definition of the minimal period constructively weaker than that
used here. In this paper we seek conditions under which the minimal period does exist; we prove
that if θ is continuously differentiable and periodic, and G satisfies a simple geometric condition,
then we can construct the minimal period of θ .

E-mail address: mmmrh@leeds.ac.uk.
1 That is, mathematics with intuitionistic logic and an appropriate set-theoretic foundation such as those in [1,4,9,10].

For more on BISH and other varieties of constructive mathematics, see [3,6,7].
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Fig. 1. The encircled tangent ball condition in two dimensions.

A metric abelian group2 is an abelian group G equipped with a metric such that the mapping
(x, y)  y − x is pointwise continuous at (0G , 0G) ∈ G × G, and uniformly continuous on
compact3 subsets of G × G. The mappings x  −x and (x, y)  x + y are then pointwise
continuous throughout their domains, and uniformly continuous on compact subsets of their
domains. A metric abelian group G is said to be nontrivial if the metric complement of {0G}, in
G, is inhabited.

A homomorphism θ of the additive group R into a metric abelian group G is continuous if
it is uniformly continuous on each compact (or, equivalently, on each bounded) subset of R. In
particular, if θ is periodic, then it is uniformly continuous on R.

Let G be the image of R under a differentiable map f into Rn . Then G is said to satisfy
the encircled tangent ball condition4 if for each t ∈ R there exists R > 0 such that for all
y ∈ ( f ′(t))⊥ ∩ ∂ B( f (t), R) we have

B(y, R) ∩ G = { f (t)},

where B(x, r) and B(x, r) represent the open and closed balls, respectively, centered on x with
radius r , and ∂S represents the boundary of S. We say that R is a buffer radius of G at θ(t). If
there exists R > 0 such that R is a buffer radius for G at x for each x in G, then we say that
G satisfies the uniform encircled tangent ball condition. The encircled tangent ball condition
provides a lower bound for the radius of curvature of f at each point; more importantly it also
bounds how close the curve can get to itself without becoming periodic. Fig. 1 illustrates the
encircled tangent ball condition in two dimensions.

At first blush, the encircled tangent ball condition seems to be unnecessarily complicated,
and somewhat contrived. A more natural, though still quite complicated, condition to demand is
that f be locally bijective:

For each s ∈ R there exist ε > 0 and t, t ′ ∈ R such that s ∈ (t, t ′) and f is a bijection
between (t, t ′) and B( f (s), ε).

2 We use the standard additive notation for all abelian groups.
3 A subset S of a metric space is totally bounded if it can be covered by arbitrarily small balls centered on points in

S, and is compact if it is both complete and totally bounded. In the presence of Brouwer’s fan theorem this definition
of compactness is equivalent to open cover compactness, and with weak König’s lemma it is equivalent to sequential
compactness (see [6]). Any closed ball in RN is compact.

4 This is a generalization of the twin tangent ball condition introduced in [8].
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