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Smoothness and uniqueness in ridge
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Abstract

In this note we consider problems of uniqueness, smoothness and representation of linear combinations
of a finite number of ridge functions with fixed directions.
c⃝ 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Ridge functions; Smoothness; Uniqueness

1. Introduction

A ridge function, in its simplest format, is a multivariate function of the form

f (a · x),

defined for all x = (x1, . . . , xn) ∈ Rn , where a = (a1, . . . , an) ∈ Rn
\ {0} is a fixed non-zero

vector, called a direction, a · x =
n

j=1 a j x j is the usual inner product, and f is a real-valued
function defined on R. Note that

f (a · x)

is constant on the hyperplanes {x : a · x = c}. Ridge functions are relatively simple multivariate
functions. Ridge functions (formerly known as plane waves) were so-named in 1975 by Logan
and Shepp [11]. They appear in various areas and under numerous guises.

In this note we consider problems of uniqueness, smoothness and representation of linear
combinations of a finite number of ridge functions. That is, assume we are given a function F of
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the form

F(x) =

m
i=1

fi (ai
· x), (1.1)

where m is finite, and the ai are pairwise linearly independent vectors in Rn . We ask and
answer the following questions. If F is of a certain smoothness class, what can we say about
the smoothness of the fi ? How many different ways can we write F as a linear combination of
a finite number of ridge functions, i.e., to what extent is a representation of F in the form (1.1)
unique? And, finally, which other ridge functions f (a · x) can be written in the form (1.1) with
a ≠ αai , for any α ∈ R and i = 1, . . . , m?

In Section 4 we generalize the main results of this paper to finite linear combinations of
functions of the form

f (Ax)

where A is a fixed d × n matrix, 1 ≤ d < n, and f is a real-valued function defined on Rd . For
d = 1, this reduces to a ridge function.

2. Smoothness

Let Ck(Rn), k ∈ Z+, denote the usual set of real-valued functions with all derivatives of order
up to and including k being continuous. Assume F ∈ Ck(Rn) is of the form (1.1). What does
this imply, if anything, about the smoothness of the fi ? In the case m = 1 there is nothing to
prove. That is, if

F(x) = f1(a1
· x)

is in Ck(Rn) for some a1
≠ 0, then obviously f1 ∈ Ck(R). This same result holds when m = 2.

As the a1 and a2 are linearly independent, there exists a vector c ∈ Rn satisfying a1
· c = 0 and

a2
· c = 1. Thus

F(tc) = f1(a1
· tc) + f2(a2

· tc) = f1(0) + f2(t).

As F(tc) is in Ck(R), as a function of t , so is f2. The same result holds for f1.
However this result is no longer valid when m ≥ 3, without some assumptions on the fi . To

see this, let us recall that the Cauchy Functional Equation

g(x + y) = g(x) + g(y) (2.1)

has, as proved by Hamel [8] in 1905, very badly behaved solutions; see e.g., Aczél [1] for a
discussion of the solutions of this equation. As such, setting f1 = f2 = − f3 = g, we have very
badly behaved (and certainly not in Ck(R)) fi , i = 1, 2, 3, that satisfy

0 = f1(x1) + f2(x2) + f3(x1 + x2)

for all (x1, x2) ∈ R2. That is, the very smooth function on the left-side of this equation is a sum of
three unruly ridge functions. As shall shortly become evident, this Cauchy Functional Equation
is critical in the analysis of our problem for all m ≥ 3.

It was proved by Buhmann and Pinkus [2] that if F ∈ Ck(Rn), and if fi ∈ L1
loc(R) for each

i , then fi ∈ Ck(R) for each i , if k ≥ m − 1. The method of proof therein used smoothing
and generalized functions. In this note we remove the restriction k ≥ m − 1, have different
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