

Available online at www.sciencedirect.com

indagationes mathematicae

Indagationes Mathematicae 24 (2013) 725–738

www.elsevier.com/locate/indag

Smoothness and uniqueness in ridge function representation

A. Pinkus

Department of Mathematics, Technion, Haifa, Israel

Abstract

In this note we consider problems of uniqueness, smoothness and representation of linear combinations of a finite number of ridge functions with fixed directions.

© 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Ridge functions; Smoothness; Uniqueness

1. Introduction

A ridge function, in its simplest format, is a multivariate function of the form

 $f(\mathbf{a} \cdot \mathbf{x}),$

defined for all $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$, where $\mathbf{a} = (a_1, \ldots, a_n) \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ is a fixed non-zero vector, called a *direction*, $\mathbf{a} \cdot \mathbf{x} = \sum_{j=1}^n a_j x_j$ is the usual inner product, and f is a real-valued function defined on \mathbb{R} . Note that

 $f(\mathbf{a} \cdot \mathbf{x})$

is constant on the hyperplanes { $\mathbf{x} : \mathbf{a} \cdot \mathbf{x} = c$ }. Ridge functions are relatively simple multivariate functions. Ridge functions (formerly known as *plane waves*) were so-named in 1975 by Logan and Shepp [11]. They appear in various areas and under numerous guises.

In this note we consider problems of uniqueness, smoothness and representation of linear combinations of a finite number of ridge functions. That is, assume we are given a function F of

E-mail address: pinkus@technion.ac.il.

^{0019-3577/\$ -} see front matter © 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved. doi:10.1016/j.indag.2012.10.004

the form

$$F(\mathbf{x}) = \sum_{i=1}^{m} f_i(\mathbf{a}^i \cdot \mathbf{x}), \tag{1.1}$$

where *m* is finite, and the \mathbf{a}^i are pairwise linearly independent vectors in \mathbb{R}^n . We ask and answer the following questions. If *F* is of a certain smoothness class, what can we say about the smoothness of the f_i ? How many different ways can we write *F* as a linear combination of a finite number of ridge functions, i.e., to what extent is a representation of *F* in the form (1.1) unique? And, finally, which other ridge functions $f(\mathbf{a} \cdot \mathbf{x})$ can be written in the form (1.1) with $\mathbf{a} \neq \alpha \mathbf{a}^i$, for any $\alpha \in \mathbb{R}$ and $i = 1, \ldots, m$?

In Section 4 we generalize the main results of this paper to finite linear combinations of functions of the form

 $f(A\mathbf{x})$

where A is a fixed $d \times n$ matrix, $1 \le d < n$, and f is a real-valued function defined on \mathbb{R}^d . For d = 1, this reduces to a ridge function.

2. Smoothness

Let $C^k(\mathbb{R}^n)$, $k \in \mathbb{Z}_+$, denote the usual set of real-valued functions with all derivatives of order up to and including k being continuous. Assume $F \in C^k(\mathbb{R}^n)$ is of the form (1.1). What does this imply, if anything, about the smoothness of the f_i ? In the case m = 1 there is nothing to prove. That is, if

$$F(\mathbf{x}) = f_1(\mathbf{a}^1 \cdot \mathbf{x})$$

is in $C^k(\mathbb{R}^n)$ for some $\mathbf{a}^1 \neq \mathbf{0}$, then obviously $f_1 \in C^k(\mathbb{R})$. This same result holds when m = 2. As the \mathbf{a}^1 and \mathbf{a}^2 are linearly independent, there exists a vector $\mathbf{c} \in \mathbb{R}^n$ satisfying $\mathbf{a}^1 \cdot \mathbf{c} = 0$ and $\mathbf{a}^2 \cdot \mathbf{c} = 1$. Thus

$$F(t\mathbf{c}) = f_1(\mathbf{a}^1 \cdot t\mathbf{c}) + f_2(\mathbf{a}^2 \cdot t\mathbf{c}) = f_1(0) + f_2(t)$$

As $F(t\mathbf{c})$ is in $C^k(\mathbb{R})$, as a function of t, so is f_2 . The same result holds for f_1 .

However this result is no longer valid when $m \ge 3$, without some assumptions on the f_i . To see this, let us recall that the Cauchy Functional Equation

$$g(x + y) = g(x) + g(y)$$
 (2.1)

has, as proved by Hamel [8] in 1905, very badly behaved solutions; see e.g., Aczél [1] for a discussion of the solutions of this equation. As such, setting $f_1 = f_2 = -f_3 = g$, we have very badly behaved (and certainly not in $C^k(\mathbb{R})$) f_i , i = 1, 2, 3, that satisfy

$$0 = f_1(x_1) + f_2(x_2) + f_3(x_1 + x_2)$$

for all $(x_1, x_2) \in \mathbb{R}^2$. That is, the very smooth function on the left-side of this equation is a sum of three unruly ridge functions. As shall shortly become evident, this Cauchy Functional Equation is critical in the analysis of our problem for all $m \ge 3$.

It was proved by Buhmann and Pinkus [2] that if $F \in C^k(\mathbb{R}^n)$, and if $f_i \in L^1_{loc}(\mathbb{R})$ for each i, then $f_i \in C^k(\mathbb{R})$ for each i, if $k \ge m - 1$. The method of proof therein used smoothing and generalized functions. In this note we remove the restriction $k \ge m - 1$, have different

726

Download English Version:

https://daneshyari.com/en/article/4673057

Download Persian Version:

https://daneshyari.com/article/4673057

Daneshyari.com