Sister Beiter and Kloosterman: A tale of cyclotomic coefficients and modular inverses

Cristian Cobeli ${ }^{\mathrm{a}, *}$, Yves Gallot ${ }^{\mathrm{b}}$, Pieter Moree ${ }^{\mathrm{c}}$, Alexandru Zaharescu ${ }^{\mathrm{d}, \mathrm{a}}$
a "Simion Stoilow" Institute of Mathematics of the Romanian Academy, 21 Calea Grivitei Street, P. O. Box 1-764, Bucharest 014700, Romania
b 12 bis rue Perrey, 31400 Toulouse, France
c Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany
${ }^{\mathrm{d}}$ Department of Mathematics, University of Illinois at Urbana-Champaign, 273 Altgeld Hall, MC-382, 1409 W. Green Street, Urbana, IL 61801, USA

Abstract

For a fixed prime p, the maximum coefficient (in absolute value) $M(p)$ of the cyclotomic polynomial $\Phi_{p q r}(x)$, where r and q are free primes satisfying $r>q>p$ exists. Sister Beiter conjectured in 1968 that $M(p) \leq(p+1) / 2$. In 2009 Gallot and Moree showed that $M(p) \geq 2 p(1-\epsilon) / 3$ for every p sufficiently large. In this article Kloosterman sums ('cloister man sums') and other tools from the distribution of modular inverses are applied to quantify the abundancy of counter-examples to Sister Beiter's conjecture and sharpen the above lower bound for $M(p)$. (C) 2013 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Cyclotomic coefficients; Sister Beiter conjecture; Modular inverses; Kloosterman sums

1. Introduction

The n-th cyclotomic polynomial $\Phi_{n}(x)$ is defined by

$$
\Phi_{n}(x)=\prod_{\substack{1 \leq j \leq n \\(j, n)=1}}\left(x-\zeta_{n}^{j}\right)=\sum_{k=0}^{\infty} a_{n}(k) x^{k},
$$

[^0]with ζ_{n} a n-th primitive root of unity (one can take $\zeta_{n}=e^{2 \pi i / n}$). It has degree $\varphi(n)$, with φ Euler's totient function. We write $A(n)=\max \left\{\left|a_{n}(k)\right|: k \geq 0\right\}$, and this quantity is called the height of $\Phi_{n}(x)$. It is easy to see that $A(n)=A(N)$, with $N=\prod_{p \mid n, p>2} p$ the odd squarefree kernel. In deriving this one uses the observation that if n is odd, then $A(2 n)=A(n)$. If n has at most two distinct odd prime factors, then $A(n)=1$. If $A(n)>1$, then we necessarily must have that n has at least three distinct odd prime factors. Thus for $n<105$ we have $A(n)=1$. It turns out that $A(3 \cdot 5 \cdot 7)=2$ with $a_{105}(7)=-2$. Thus the easiest case where we can expect non-trivial behavior of the coefficients of $\Phi_{n}(x)$ is the ternary case, where $n=p q r$, with $2<p<q<r$ odd primes. It is for this reason that in this paper we will be mainly interested in the behavior of coefficients of ternary cyclotomic polynomials.

If n is a prime, then we have $\Phi_{n}(x)=1+x+\cdots+x^{n-1}$. Already if $n=p q$ consists of two prime factors and is odd, modular inverses come into the picture. In this binary case the coefficients are computed in the following lemma. For a proof see e.g. Lam and Leung [18] or Thangadurai [23].

Lemma 1. Let $p<q$ be odd primes. Let ρ and σ be the (unique) non-negative integers for which $1+p q=\rho p+\sigma q$. Let $0 \leq m<p q$. Then either $m=\alpha_{1} p+\beta_{1} q$ or $m=\alpha_{1} p+\beta_{1} q-p q$ with $0 \leq \alpha_{1} \leq q-1$ the unique integer such that $\alpha_{1} p \equiv m(\bmod q)$ and $0 \leq \beta_{1} \leq p-1$ the unique integer such that $\beta_{1} q \equiv m(\bmod p)$. The cyclotomic coefficient $a_{p q}(m)$ equals

$$
\begin{cases}1 & \text { if } m=\alpha_{1} p+\beta_{1} q \text { with } 0 \leq \alpha_{1} \leq \rho-1,0 \leq \beta_{1} \leq \sigma-1 \\ -1 & \text { if } m=\alpha_{1} p+\beta_{1} q-p q \text { with } \rho \leq \alpha_{1} \leq q-1, \sigma \leq \beta_{1} \leq p-1 \\ 0 & \text { otherwise. }\end{cases}
$$

Note that ρ is merely the modular inverse of p modulo q and σ is the modular inverse of q modulo p. In the ternary case Kaplan's lemma [16] can be used to express a ternary cyclotomic coefficient into a sum of binary ones. It is thus not surprising that also in the ternary case modular inverses make their appearance. We will give some examples of this.

Let \bar{q} and $\bar{r}, 0<\bar{q}, \bar{r}<p$ be the inverses of q and r modulo p respectively. Set $a=\min (\bar{q}, \bar{r}, p-\bar{q}, p-\bar{r})$. Put $b=\max (\min (\bar{q}, p-\bar{q}), \min (\bar{r}, p-\bar{r}))$. Note that $b \geq a$. Bzdȩga [8] showed that

$$
\begin{equation*}
A(p q r) \leq \min (2 a+b, p-b) \tag{1}
\end{equation*}
$$

It is easy to show from this estimate that $A(p q r)<3 p / 4$ (see, e.g., Section 3 of Gallot et al. [14]). Notice that this bound does not depend on the two largest prime factors of n. Indeed, for an arbitrary n it was shown by Justin [15] and independently by Felsch and Schmidt [12] that there is an upper bound for $A(n)$ that does not depend on the largest and second largest prime factor of n. Thus for a fixed prime p the maximum

$$
M(p):=\max \{A(p q r): p<q<r\}
$$

where q, r range over all the primes satisfying $p<q<r$, exists. The major open problem involving ternary cyclotomic coefficients, is to find a finite procedure to determine $M(p)$.
H. Möller [20] gave a construction showing that $M(p) \geq(p+1) / 2$ for $p>5$. On the other hand, in 1968 Sister Marion Beiter [1] had conjectured (a conjecture she repeated in 1971 [2]) that $M(p) \leq(p+1) / 2$ and shown that $M(3)=2[3]$, which on combining leads to the conjecture that $M(p)=(p+1) / 2$ for $p>2$. The bound of Möller together with $M(5) \leq 3$ (established independently by Beiter [2] and Bloom [4]) shows that $M(5)=3$. Zhao and Zhang [26] showed

https://daneshyari.com/en/article/4673062

Download Persian Version:
https://daneshyari.com/article/4673062

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: cristian.cobeli@gmail.com, cristian.cobeli@imar.ro (C. Cobeli), galloty @orange.fr (Y. Gallot), moree@mpim-bonn.mpg.de (P. Moree), zaharesc@math.uiuc.edu (A. Zaharescu).
 0019-3577/\$ - see front matter © 2013 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
 doi:10.1016/j.indag.2013.01.002

