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Abstract

In this note we prove results of the following types. Let be given distinct complex numbers z j satisfying
the conditions |z j | = 1, z j ≠ 1 for j = 1, . . . , n and for every z j there exists an i such that zi = z j . Then

inf
k

n
j=1

zk
j ≤ −1.

If, moreover, none of the ratios zi /z j with i ≠ j is a root of unity, then

inf
k

n
j=1

zk
j ≤ −

1

π4
log n.

The constant −1 in the former result is the best possible. The above results are special cases of upper bounds
for infk

n
j=1 b j zk

j obtained in this paper.
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1. Introduction

Our colleague Marc N. Spijker asked the following question in view of an application in
numerical analysis [6]:
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Problem 1. Is it true that for given real numbers b j ≥ 1 and distinct complex numbers z j
satisfying the conditions |z j | = 1, z j ≠ 1 for j = 1, . . . , n and

for every z j there exists an i such that zi = z j , bi = b j

we have lim infk→∞

n
j=1 b j zk

j ≤ −1?

Note that by the conjugacy conditions on bi , zi the sum
n

j=1 b j zk
j is real for all k.

In Section 2 we answer Spijker’s question in a slightly generalized and sharpened form
(see Theorem 1 and Corollary 1). The solution of Problem 1 has an application to numerical
analysis, more particularly Linear multistep methods (LMMs). They form a well-known class of
numerical step-by-step methods for solving initial-value problems for certain systems of ordinary
differential equations. In many applications of such methods it is essential that the LMM has
specific stability properties. An important property of this kind is named boundedness and has
recently been studied by Hundsdorfer, Mozartova and Spijker [3]. In that paper the stepsize-
coefficient γ is a crucial parameter in the study of boundedness. In [6] Spijker attempts to single
out all LMMs with a positive stepsize-coefficient γ for boundedness. By using Corollary 1 below
he is able to nicely narrow the class of such LMMs.

As a fine point we can remark that the bound −1 in Spijker’s problem is the optimal one.
Namely, take z j = ζ j where ζ = e2π i/(n+1) and b j = 1 for all j . Then the exponential sum
equals n if k is divisible by n + 1 and −1 if not.

If, moreover, none of z j/zi with i ≠ j is a root of unity, then the upper bound in Prob-
lem 1 can be improved to − log n/π4. We deal with this question in Theorem 3 and more
particularly Corollary 2. The obtained results can easily be transformed into estimates for
infk∈Z

m
j=1 b j cos(2πα j k) where b j , α j are real numbers and α1, . . . , αn are strictly between

0 and 1/2. Theorem 4 states that this infimum is equal to inft∈R
m

j=1 b j cos(2πα j t), provided
that the Q-span of α1, . . . , αn does not contain 1.

2. The general case

We provide an answer to Problem 1.

Theorem 1. Let n be a positive integer. Let b1, . . . , bn be nonzero complex numbers such that
bn+1−i = bi for all i = 1, 2, . . . , n. Let z1, . . . , zn be distinct complex numbers with absolute
value 1, not equal to 1, such that zn+1−i = zi for all i = 1, 2, . . . , n. Then

lim inf
k→∞

n
j=1

b j z
k
j ≤ −

n
j=1

|b j |
2

n
j=1

|b j |

.

Note that
n

j=1 b j zk
j is real because of the conjugacy conditions.

By applying the Cauchy–Schwarz inequality we immediately obtain the following conse-
quence.

Corollary 1. Let n, b j , z j be as in Theorem 1. Then

lim inf
k→∞

n
j=1

b j z
k
j ≤ −

1
n

n
j=1

|b j |.
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