On Gauss problem for the Lüroth expansion

Marius Iosifescu ${ }^{\text {a }}$, Gabriela Ileana Sebe ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Romanian Academy, "Gheorghe Mihoc-Caius Iacob", Institute for Mathematical Statistics and Applied Mathematics, Calea 13 Septembrie 13, 050711 Bucharest, Romania
b "Politehnica" University of Bucharest, Faculty of Applied Sciences, Splaiul Independenţei 313, 060042, Bucharest, Romania

Received 25 August 2012; received in revised form 29 November 2012; accepted 10 December 2012
Communicated by R. Tijdeman

Abstract

Consider the transformation $\tau(x)=\left[\frac{1}{x}\right]\left(\left(\left[\frac{1}{x}\right]+1\right) x-1\right), x \neq 0, \tau(0)=0$, of $I=[0,1]$ which underlines the Lüroth expansion. Let $\mu \ll \lambda$ (Lebesgue measure on [0, 1]). We show that $\mu \tau^{-n}(A)$ approaches $\lambda(A)$ uniformly in $A \in \mathcal{B}_{I}$ with reminder $O\left(q^{n}\right), 0<q<1$, as $n \rightarrow \infty$, for certain densities $\mathrm{d} \mu / \mathrm{d} \lambda$. (c) 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Lüroth series; Random system with complete connections; Perron-Frobenius operator; Piecewise monotonic transformation

1. Introduction

Lüroth [7] introduced and studied the following series expansion. Let $x \in I$. Then

$$
\begin{align*}
x= & \frac{1}{d_{1}(x)}+\frac{1}{d_{1}(x)\left(d_{1}(x)-1\right) d_{2}(x)}+\cdots \\
& +\frac{1}{d_{1}(x)\left(d_{1}(x)-1\right) \cdots d_{n-1}(x)\left(d_{n-1}(x)-1\right) d_{n}(x)}+\cdots, \tag{1}
\end{align*}
$$

[^0]where the digits (incomplete quotients) $d_{n}(x), n \in \mathbb{N}_{+}=\{1,2, \ldots\}$, are natural integers ≥ 2. (We will suppress x in the notation when confusion is not possible.) Lüroth showed that every irrational number has a unique infinite expansion (1) and that each rational either has a finite or an infinite periodic expansion. The series expansion (1) is called the Lüroth series of x.

We note that the Lüroth expansion is generated by the transformation $\tau: I \rightarrow I$ defined as

$$
\begin{equation*}
\tau(x)=\left[\frac{1}{x}\right]\left(\left(\left[\frac{1}{x}\right]+1\right) x-1\right), \quad x \neq 0, \quad \tau(0)=0 . \tag{2}
\end{equation*}
$$

Here [•] stands for the integer part. For $x \in I$ we define $d_{1}(x)=\left[\frac{1}{x}\right]+1, x \neq 0 ; d_{1}(0)=\infty$ and $d_{n+1}(x)=d_{1}\left(\tau^{n}(x)\right), n \in \mathbb{N}_{+}$. It follows from (2) that $\tau(x)=d_{1}(x)\left(d_{1}(x)-1\right) x-$ ($\left.d_{1}(x)-1\right)$ and, therefore,

$$
\begin{aligned}
x= & \frac{1}{d_{1}(x)}+\frac{\tau(x)}{d_{1}(x)\left(d_{1}(x)-1\right)} \\
= & \frac{1}{d_{1}(x)}+\frac{1}{d_{1}(x)\left(d_{1}(x)-1\right)}\left(\frac{1}{d_{1}(\tau(x))}+\frac{\tau^{2}(x)}{d_{1}(\tau(x))\left(d_{1}(\tau(x)-1)\right)}\right) \\
= & \frac{1}{d_{1}(x)}+\frac{1}{d_{1}(x)\left(d_{1}(x)-1\right) d_{2}(x)} \\
& +\frac{\tau^{2}(x)}{d_{1}(x)\left(d_{1}(x)-1\right) d_{2}(x)\left(d_{2}(x)-1\right)}=\cdots \\
= & \frac{1}{d_{1}(x)}+\frac{1}{d_{1}(x)\left(d_{1}(x)-1\right) d_{2}(x)} \\
& +\frac{1}{d_{1}(x)\left(d_{1}(x)-1\right) d_{2}(x)\left(d_{2}(x)-1\right) d_{3}(x)}+\cdots \\
& +\cdots+\frac{\tau^{n}(x)}{d_{1}(x)\left(d_{1}(x)-1\right) \cdots d_{n}(x)\left(d_{n}(x)-1\right)} .
\end{aligned}
$$

Putting

$$
\begin{equation*}
\frac{p_{n}(x)}{q_{n}(x)}=\frac{1}{d_{1}(x)}+\sum_{k=1}^{n-1} \frac{1}{d_{1}(x)\left(d_{1}(x)-1\right) \cdots d_{k}(x)\left(d_{k}(x)-1\right) d_{k+1}(x)}, \quad n \geq 1 \tag{3}
\end{equation*}
$$

where $q_{1}(x)=d_{1}(x), q_{n}(x)=d_{1}(x)\left(d_{1}(x)-1\right) \cdots d_{n-1}(x)\left(d_{n-1}(x)-1\right) d_{n}(x), n \geq 2$, the n-th convergent of x, it follows from (3) that

$$
x-\frac{p_{n}(x)}{q_{n}(x)}=\frac{\tau^{n}(x)}{q_{n}(x)\left(d_{n}(x)-1\right)}, \quad n \geq 1 .
$$

It follows from $d_{n} \geq 2$ and $0 \leq \tau^{n} \leq 1$ that the sum (1) converges to x. We will write $x=$ $\left(d_{1}(x), d_{2}(x), \ldots\right)$ and $\frac{p_{n}}{q_{n}}=\left(d_{1}, d_{2} \ldots, d_{n}\right)$.

In addition we should mention that the digits $d_{n}, n \in \mathbb{N}_{+}$, may be considered as random variables on I equipped with the σ-algebra \mathcal{B}_{I} of all Borel subsets of I. These are almost

https://daneshyari.com/en/article/4673097

Download Persian Version:
https://daneshyari.com/article/4673097

Daneshyari.com

[^0]: * Corresponding author. Tel.: +40 21 4029489; fax: +40 213181011.

 E-mail addresses: miosifes @ acad.ro (M. Iosifescu), igsebe @yahoo.com (G.I. Sebe).
 0019-3577/\$ - see front matter © 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
 doi:10.1016/j.indag.2012.12.003

