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Abstract

An analogue of the regular continued fraction expansion for the p-adic numbers for prime p was given
by T. Schneider, such that for x in pZp , i.e. the open unit ball in the p-adic numbers, we have uniquely
determined sequences (bn ∈ {1, 2, . . . , p − 1}, an ∈ N) (n = 1, 2, . . .) such that

x =
pa0

b1 +
pa1

b2+
pa2

b3+
pa3

b4 +

...

.

A sample result that we prove is that if pn (n = 1, 2, . . .) denotes the sequences of rational primes, we have

lim
N→∞

1
N

N
n=1

apn (x) =
p

p − 1
,

almost everywhere with respect to Haar measure. In the case where pn is replaced by n this result is due
to J. Hirsh and L. C. Washington. The proofs rely on pointwise subsequence and moving average ergodic
theorems.
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1. Introduction

Extending the idea of the Euclidean algorithm, for a real number x , let

x = c0 +
1

c1 +
1

c2+
1

c3+
1

c4 +

...

,

denote its regular continued fraction expansion, which is also written more compactly as
[c0; c1, c2, . . .]. The terms c0, c1, . . . are called the partial quotients of the continued fraction
expansion and the sequence of rational truncates

[c0; c1, . . . , cn] =
pn

qn
(n = 1, 2, . . .),

are called the convergents of the continued fraction expansion.

For a real number y let {y} denote its fractional part. We now consider the particular ergodic
properties of the Gauss map, defined on [0, 1] by

T x =




1
x


if x ≠ 0;

0 if x = 0.

Notice that cn(x) = cn−1(T x) (n = 1, 2, . . .). The dynamical system (X, β, µ, T ) where X
denotes [0, 1], β is the σ -algebra of Borel sets on X, µ = γ is the measure on (X, β) defined for
any A in β by

γ (A) =
1

log 2


A

dx

x + 1
,

and T is the Gauss map is ergodic. See [24], [8, pp. 165–177], or Chapter 4 of [10] for more
details. This point of view can be used to prove results like the following.

Suppose F : R≥0 → R is continuous, increasing and such that 1

0
|F(c1(x))|dx < ∞.

For each n ∈ N and arbitrary real numbers d1, . . . , dn we set

MF,n(d1, . . . , dn) = F−1


F(d1) + · · · + F(dn)

n


.

Then we have

lim
n→∞

MF,n(c1(x), . . . , cn(x)) = F−1

 1

0
F(c1(x))dx


,
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