On the distance between products of consecutive Fibonacci numbers and powers of Fibonacci numbers

Jhon J. Bravo ${ }^{\text {a,1 }}$, Takao Komatsu ${ }^{\text {b }}$, Florian Luca ${ }^{\text {c,* }}$
${ }^{a}$ Departamento de Matemáticas, Universidad del Cauca, Calle 5 No 4-70, Popayán, Colombia
${ }^{\mathrm{b}}$ Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
${ }^{\mathrm{c}}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, Mexico

Received 22 May 2012; received in revised form 6 August 2012; accepted 15 August 2012

Communicated by R. Tijdeman

Abstract

Here, we find a lower bound for $\left|F_{n} \cdots F_{n+k-1}-F_{m}^{\ell}\right|$ for positive integers k, ℓ, m and n in terms of $\max \{k, \ell, m, n\}$, where F_{S} is the s th Fibonacci number. © 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Fibonacci numbers; Applications of linear forms in logarithms of algebraic numbers

1. Introduction

Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence given by $F_{0}=0, F_{1}=1$ and

$$
F_{n+2}=F_{n+1}+F_{n} \quad \text { for all } n \geq 0
$$

In this paper, we study a lower bound on the quantity

$$
\begin{equation*}
\left|F_{n} \cdots F_{n+k-1}-F_{m}^{\ell}\right| \quad \text { where } k \geq 1, \ell \geq 1, n \geq 3, m \geq 3 \tag{1}
\end{equation*}
$$

[^0]Since $F_{1}=F_{2}=1$, our results give a lower bound for the expressions (1) for all quadruples of nonnegative integers (k, ℓ, m, n) in terms of $\max \{k, \ell, m, n\}$ except for some trivial cases such as when $n=0$, or when $m \in\{0,1,2\}$, or when $m=n$ and $\ell=1$.

Theorem 1. Let (k, ℓ, m, n) be integers with the properties that $k \geq 1, \ell \geq 1, n \geq 3$ and $m \geq 3$. Put $X:=\max \{k, \ell, m, n\}$. Then the inequality

$$
\begin{equation*}
\left|F_{n} \cdots F_{n+k-1}-F_{m}^{\ell}\right|>10^{-3 / 2} X^{1 / 40} \quad \text { holds always } \tag{2}
\end{equation*}
$$

except when either $\ell=k=1$ and $m=n(=X)$ or $(k, \ell, m, n)=(1,3,3,6)$, for which the left-hand side of Eq. (2) above is 0 .

We have the following numerical corollary.
Corollary 1. The largest solution of the inequality

$$
\begin{equation*}
\left|F_{n} \cdots F_{n+k-1}-F_{m}^{\ell}\right| \leq 100 \text { with } k \geq 1, \ell \geq 1, m \geq 3, n \geq 3 \tag{3}
\end{equation*}
$$

and $m \neq n$ when $k=\ell=1$ is

$$
\begin{equation*}
\left|F_{9} \cdots F_{13}-F_{11}^{5}\right|=89 \tag{4}
\end{equation*}
$$

Here, by the largest solution we mean the solution with the maximal value of $\max \left\{F_{n} \cdots\right.$ $\left.F_{n+k-1}, F_{m}^{\ell}\right\}$ among all the possible solutions. This maximal value equals 5584059449.

We note that formula (4) is a consequence of the formula

$$
F_{n} F_{n+1} F_{n+3} F_{n+4}-F_{n+2}^{4}=-1
$$

which holds for all positive integers n (in the particular case of (4) we have $n=9$).
Throughout the paper, $\left(L_{n}\right)_{n \geq 0}$ denotes the Lucas companion of the Fibonacci sequence given by $L_{0}=2, L_{1}=1$ and $L_{n+2}=L_{n+1}+L_{n}$ for all $n \geq 0$. We write $(\alpha, \beta):=$ $((1+\sqrt{5}) / 2,(1-\sqrt{5}) / 2)$ for the roots of the characteristic equation $x^{2}-x-1=0$ of the Fibonacci and Lucas sequences. The Binet formulas for the Fibonacci and Lucas numbers are

$$
\begin{equation*}
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad \text { and } \quad L_{n}=\alpha^{n}+\beta^{n} \quad \text { for all } n \geq 0 \tag{5}
\end{equation*}
$$

We shall frequently use, often without mentioning it, the inequality

$$
\alpha^{n-2} \leq F_{n} \leq \alpha^{n-1} \quad \text { for all positive integers } n
$$

2. The proof of Theorem 1

We fix an integer a and study the equation

$$
\begin{equation*}
F_{n} F_{n+1} \cdots F_{n+k-1}-F_{m}^{\ell}=a \tag{6}
\end{equation*}
$$

The plan is to show that it has only finitely many integer solutions with the properties $k \geq 1$, $\ell \geq 1, m \geq 3$ and $n \geq 3$, except when $a=0$ and either $k=\ell=1$ and $m=n$, or $(k, \ell, m, n)=(1,3,3,6)$, and to bound X in terms of a. Note that if in (6) we replace products of

https://daneshyari.com/en/article/4673147

Download Persian Version
https://daneshyari.com/article/4673147

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jbravo@unicauca.edu.co (J.J. Bravo), komatsu@cc.hirosaki-u.ac.jp (T. Komatsu), fluca@matmor.unam.mx (F. Luca).
 ${ }^{1}$ Current address: Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, C. P. 04510, México D.F., Mexico.
 0019-3577/\$ - see front matter © 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
 doi:10.1016/j.indag.2012.08.004

