

Available online at www.sciencedirect.com

**SciVerse ScienceDirect** 

indagationes mathematicae

Indagationes Mathematicae 24 (2013) 279–290

www.elsevier.com/locate/indag

## Operator measures and integration operators

Marian Nowak

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Góra, Poland

Received 30 April 2012; received in revised form 20 September 2012; accepted 8 October 2012

Communicated by B. de Pagter

## Abstract

Let  $(\Omega, \Sigma, \mu)$  be a finite complete measure space and  $(X, \|\cdot\|_X)$  be a Banach space with the Banach dual  $X^*$ . Let  $\mathcal{L}^{\infty}(\mu, X)$  denote the space of all  $\mu$ -measurable functions  $f : \Omega \to X$  such that ess  $\sup_{\omega \in \Omega} \|f(\omega)\|_X < \infty$ . We study the problem of the integral representation of some natural classes of linear operators from  $\mathcal{L}^{\infty}(\mu, X)$  to a Banach space with respect to the corresponding operator measures. We characterize relatively  $\sigma$  (bvca $_{\mu}(\Sigma, X^*), \mathcal{L}^{\infty}(\mu, X)$ )-sequentially compact sets in the space bvca $_{\mu}(\Sigma, X^*)$ of all countably additive measures  $\nu : \Sigma \to X^*$  of bounded variation with  $\nu(A) = 0$  if  $\mu(A) = 0$ . © 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

*Keywords:* Operator measures; Strongly measurable functions; Weak-star sequential compactness; Absolutely continuous operators; Integration operators;  $\sigma$ -smooth operators

## 1. Introduction and terminology

Let  $(X, \|\cdot\|_X)$  and  $(Y, \|\cdot\|_Y)$  be real Banach spaces and let  $B_X$  stand for the closed unit ball in X. Let  $X^*$  and  $Y^*$  stand for the Banach duals of X and Y respectively. Denote by  $\mathcal{L}(X, Y)$ the space of all bounded linear operators from X to Y. By  $\sigma(L, K)$  we will denote the weak topology with respect to a dual pair (L, K).

Now we recall basic terminology concerning operator measures (see [9–12,2,15,16,21]). Let  $\Sigma$  be a  $\sigma$ -algebra of subsets of a non-empty set  $\Omega$ . For a finitely additive measure  $m : \Sigma \to \mathcal{L}(X, Y)$  we define the semivariation  $\widetilde{m}$  on  $A \in \Sigma$  by  $\widetilde{m}(A) := \sup \|\Sigma m(A_i)(x_i)\|_Y$ , where the supremum is taken over all finite disjoint sequences  $(A_i)$  in  $\Sigma$  with  $A_i \subset A$  and  $x_i \in B_X$  for each i.

E-mail address: M.Nowak@wmie.uz.zgora.pl.

<sup>0019-3577/\$ -</sup> see front matter © 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved. doi:10.1016/j.indag.2012.10.002

By fasv( $\Sigma$ ,  $\mathcal{L}(X, Y)$ ) we denote the set of all finitely additive measures  $m : \Sigma \to \mathcal{L}(X, Y)$  with finite semivariation, i.e.,  $\widetilde{m}(\Omega) < \infty$ .

For  $y^* \in Y^*$  let  $m_{y^*} : \Sigma \to X^*$  be a measure defined  $m_{y^*}(A)(x) := \langle m(A)(x), y^* \rangle$  for  $A \in \Sigma$  and  $x \in X$ . Moreover, for  $A \in \Sigma$  we have (see [2, Theorem 5]):

$$\widetilde{m}(A) = \sup\{|m_{y^*}|(A) : y^* \in B_{Y^*}\},\$$

where  $|m_{y^*}|(A)$  stands for the variation of  $m_{y^*}$  on  $A \in \Sigma$  (see [2, Theorem 5]). A measure  $m \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$  is said to be *variationally semi-regular* if  $\widetilde{m}(A_n) \to 0$  whenever  $A_n \downarrow \emptyset$  and  $(A_n) \subset \Sigma$ , i.e., the family  $\{|m_{y^*}| : y^* \in B_{Y^*}\}$  is uniformly countably additive (see [15,16]). (Dobrakov [12] uses the term "continuous", Swartz [21] uses the term "strongly bounded").

By  $S(\Sigma, X)$  we denote the set of all X-valued  $\Sigma$ -simple functions  $s = \sum_{i=1}^{k} (\mathbb{1}_{A_i} \otimes x_i)$ , where  $(A_i)_{i=1}^k$  is a disjoint sequence in  $\Sigma, x_i \in X$  for  $1 \le i \le n$  and  $(\mathbb{1}_{A_i} \otimes x_i)(\omega) = \mathbb{1}_{A_i}(\omega)x_i$ for  $\omega \in \Omega$ . A function  $f : \Omega \to X$  is said to be *strongly*  $\Sigma$ -measurable if there exists a sequence  $(s_n)$  in  $S(\Sigma, X)$  such that  $||s_n(\omega) - f(\omega)||_X \to 0$  for all  $\omega \in \Omega$ . It is known that if  $f : \Omega \to X$ is strongly  $\Sigma$ -measurable, then there exists a sequence  $(s_n)$  in  $S(\Sigma, X)$  such that  $||s_n(\omega) - f(\omega)||_X \to 0$  for all  $\omega \in \Omega$  and  $||s_n(\omega)||_X \le ||f(\omega)||_X$  for  $\omega \in \Omega$  and all  $n \in \mathbb{N}$  (see [10, Theorem 1.6, p. 4]). By  $\mathcal{L}^{\infty}(\Sigma, X)$  we denote the Banach space of all bounded strongly  $\Sigma$ measurable functions  $f : \Omega \to X$ , equipped with the supremum norm  $||\cdot||$ .

Following [18, Definition 1.1] one can distinguish an important class of operators from  $\mathcal{L}^{\infty}(\Sigma, X)$  to Y.

**Definition 1.1.** A bounded linear operator  $T : \mathcal{L}^{\infty}(\Sigma, X) \to Y$  is said to be  $\sigma$ -smooth if  $||T(f_n)||_Y \to 0$  whenever  $||f_n(\omega)||_X \to 0$  for all  $\omega \in \Omega$  and  $\sup_n ||f_n|| < \infty$ .

Assume that  $m \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$  is variationally semi-regular. Then each function  $f \in \mathcal{L}^{\infty}(\Sigma, X)$  is *m*-integrable and the integral of f on a set  $A \in \Sigma$  is defined by the equality:

$$\int_A f \, dm := \lim \int_A s_n \, dm,$$

where  $(s_n)$  is a sequence in  $S(\Sigma, X)$  such that  $\|(\mathbb{1}_A s_n)(\omega) - (\mathbb{1}_A f)(\omega)\|_X \to 0$  for  $\omega \in \Omega$  and sup<sub>n</sub>  $\|\mathbb{1}_A s_n\| \le \|\mathbb{1}_A f\|$  (see [12, Definition 2, p. 523 and Theorem 5, p. 524]). In [18] we study the integration operator  $T_m : \mathcal{L}^{\infty}(\Sigma, X) \to Y$  defined by  $T_m(f) = \int_{\Omega} f \, dm$ .

**Proposition 1.1** (See [18, Proposition 2.2]). Assume that  $m \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$  is variationally semi-regular. Then the integration operator  $T_m : \mathcal{L}^{\infty}(\Sigma, X) \to Y$  is  $\sigma$ -smooth.

For a bounded linear operator  $T : \mathcal{L}^{\infty}(\Sigma, X) \to Y$  let  $m_T : \Sigma \to \mathcal{L}(X, Y)$  stand for its *representing measure*, i.e.,

$$m_T(A)(x) := T(\mathbb{1}_A \otimes x) \text{ for } A \in \Sigma \text{ and } x \in X.$$

Then  $\widetilde{m}_T(\Omega) \leq ||T|| < \infty$ , i.e.,  $m_T \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ .

**Proposition 1.2** (See [18, Proposition 2.3]). Assume that  $T : \mathcal{L}^{\infty}(\Sigma, X) \to Y$  is a  $\sigma$ -smooth operator. Then its representing measure  $m_T \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$  is variationally semi-regular and

$$T(f) = T_{m_T}(f) = \int_{\Omega} f \, dm_T \quad \text{for all } f \in \mathcal{L}^{\infty}(\Sigma, X).$$

Moreover,  $||T|| = \widetilde{m}_T(\Omega)$ .

Download English Version:

## https://daneshyari.com/en/article/4673153

Download Persian Version:

https://daneshyari.com/article/4673153

Daneshyari.com