Algebraic subgroups of $GL_2(\mathbb{C})$

by K.A. Nguyen, M. van der Put and J. Top

Department of Mathematics, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

Communicated by Prof. M.S. Keane

ABSTRACT

In this note we classify, up to conjugation, all algebraic subgroups of $GL_2(\mathbb{C})$.

1. INTRODUCTION

Although the classification, up to conjugation, of the algebraic subgroups of $SL_2(\mathbb{C})$ ([3, Theorem 4.12], [6, Theorem 4.29]), and the classification of subgroups of GL_2 over a finite field ([1], [8, Theorem 6.17]) are well known, it seems that the determination of all algebraic subgroups of $GL_2(\mathbb{C})$ is not presented well in the literature. In this paper we give this classification, including full proofs. The final result is Theorem 4. We note that \mathbb{C} can be replaced everywhere by any algebraically closed field of characteristic zero.

Notation. $\mu_n \subset \mathbb{C}^*$ denotes the *n*th roots of unity and ζ_n denotes a primitive *n*th root of unity. Let $\beta: \operatorname{GL}_2(\mathbb{C}) \to \operatorname{PGL}_2(\mathbb{C}) = \operatorname{PSL}_2(\mathbb{C}), \gamma: \operatorname{SL}_2(\mathbb{C}) \to \operatorname{PSL}_2(\mathbb{C})$ denote the canonical projections. For any algebraic subgroup $H \subset \operatorname{PSL}_2(\mathbb{C})$ we write $H^{\operatorname{SL}_2} = \gamma^{-1}(H) \subset \operatorname{SL}_2(\mathbb{C})$. Further

$$B := \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mid a \in \mathbb{C}^*, b \in \mathbb{C} \right\}$$

E-mails: k.a.nguyen@math.rug.nl (K. Nguyen), mvdput@math.rug.nl (M. van der Put), j.top@math.rug.nl (J. Top).

and

$$D_{\infty} := \left\{ \begin{pmatrix} c & 0 \\ 0 & c^{-1} \end{pmatrix} \mid c \in \mathbb{C}^* \right\} \cup \left\{ \begin{pmatrix} 0 & -d \\ d^{-1} & 0 \end{pmatrix} \mid d \in \mathbb{C}^* \right\}$$

are the Borel subgroup and the infinite dihedral subgroup of $SL_2(\mathbb{C})$.

We first recall the classification of all algebraic subgroups of $PGL_2(\mathbb{C})$.

Theorem 1. Let *H* be an algebraic subgroup of $PGL_2(\mathbb{C})$. Then, up to conjugation, one of the following cases occurs:

- (1) $H = PGL_2(\mathbb{C});$
- (2) *H* is a subgroup of the group $\gamma(B)$;
- (3) $H = \gamma(D_{\infty});$
- (4) $H = D_n$ (the dihedral group of order 2n), A_4 (the tetrahedral group), S_4 (the octahedral group), or A_5 (the icosahedral group).

The above theorem reduces the problem to describing the algebraic groups in $GL_2(\mathbb{C})$ mapping to a given subgroup $G \subset PGL_2(\mathbb{C})$. Each example is therefore a central extension of G and corresponds to an element in $H^2(G, \mu)$, where μ is either \mathbb{C}^* or a finite cyclic subgroup of \mathbb{C}^* . The first case defines the Schur multiplier of G. In the interesting cases, μ is a finite group and the Schur multiplier does not provide information because the canonical map $H^2(G, \mu) \to H^2(G, \mathbb{C}^*)$ is not injective (see also Remark 3).

We note that Theorem 1 is a corollary of the following two well-known theorems.

Theorem 2 (Klein [4]). A finite subgroup of $PGL_2(\mathbb{C})$ is isomorphic to one of the following polyhedral groups:

- a cyclic group C_n;
- a dihedral group D_n of order $2n, n \ge 2$;
- the tetrahedral group A₄ of order 12;
- the octahedral group S₄ of order 24;
- the icosahedral group A₅ of order 60.

Up to conjugation, all of these groups occur as subgroups of $PGL_2(\mathbb{C})$ exactly once.

In Theorem 1, the cyclic groups C_n happen to be subgroups of $\gamma(B)$.

Theorem 3 ([3, Theorem 4.12]; [6, Theorem 4.29]). Suppose that G is an algebraic subgroup of $SL_2(\mathbb{C})$. Then, up to conjugation, one of the following cases occurs:

(1) $G = \operatorname{SL}_2(\mathbb{C});$

(2) G is a subgroup of the Borel group B;

Download English Version:

https://daneshyari.com/en/article/4673188

Download Persian Version:

https://daneshyari.com/article/4673188

Daneshyari.com