Algebraic subgroups of $\mathrm{GL}_{2}(\mathbb{C})$

by K.A. Nguyen, M. van der Put and J. Top

Department of Mathematics, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

Communicated by Prof. M.S. Keane

ABSTRACT

In this note we classify, up to conjugation, all algebraic subgroups of $\mathrm{GL}_{2}(\mathbb{C})$.

1. INTRODUCTION

Although the classification, up to conjugation, of the algebraic subgroups of $\mathrm{SL}_{2}(\mathbb{C})$ ([3, Theorem 4.12], [6, Theorem 4.29]), and the classification of subgroups of GL_{2} over a finite field ([1], [8, Theorem 6.17]) are well known, it seems that the determination of all algebraic subgroups of $\mathrm{GL}_{2}(\mathbb{C})$ is not presented well in the literature. In this paper we give this classification, including full proofs. The final result is Theorem 4 . We note that \mathbb{C} can be replaced everywhere by any algebraically closed field of characteristic zero.

Notation. $\mu_{n} \subset \mathbb{C}^{*}$ denotes the nth roots of unity and ζ_{n} denotes a primitive nth root of unity. Let $\beta: \mathrm{GL}_{2}(\mathbb{C}) \rightarrow \mathrm{PGL}_{2}(\mathbb{C})=\mathrm{PSL}_{2}(\mathbb{C}), \gamma: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \mathrm{PSL}_{2}(\mathbb{C})$ denote the canonical projections. For any algebraic subgroup $H \subset \mathrm{PSL}_{2}(\mathbb{C})$ we write $H^{\mathrm{SL}_{2}}=\gamma^{-1}(H) \subset \mathrm{SL}_{2}(\mathbb{C})$. Further

$$
B:=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right) \right\rvert\, a \in \mathbb{C}^{*}, b \in \mathbb{C}\right\}
$$

[^0]and
\[

D_{\infty}:=\left\{\left.\left($$
\begin{array}{cc}
c & 0 \\
0 & c^{-1}
\end{array}
$$\right) \right\rvert\, c \in \mathbb{C}^{*}\right\} \cup\left\{\left.\left($$
\begin{array}{cc}
0 & -d \\
d^{-1} & 0
\end{array}
$$\right) \right\rvert\, d \in \mathbb{C}^{*}\right\}
\]

are the Borel subgroup and the infinite dihedral subgroup of $\mathrm{SL}_{2}(\mathbb{C})$.
We first recall the classification of all algebraic subgroups of $\mathrm{PGL}_{2}(\mathbb{C})$.
Theorem 1. Let H be an algebraic subgroup of $\mathrm{PGL}_{2}(\mathbb{C})$. Then, up to conjugation, one of the following cases occurs:
(1) $H=\mathrm{PGL}_{2}(\mathbb{C})$;
(2) H is a subgroup of the group $\gamma(B)$;
(3) $H=\gamma\left(D_{\infty}\right)$;
(4) $H=D_{n}$ (the dihedral group of order $2 n$), A_{4} (the tetrahedral group), S_{4} (the octahedral group), or A_{5} (the icosahedral group).

The above theorem reduces the problem to describing the algebraic groups in $\mathrm{GL}_{2}(\mathbb{C})$ mapping to a given subgroup $G \subset \mathrm{PGL}_{2}(\mathbb{C})$. Each example is therefore a central extension of G and corresponds to an element in $H^{2}(G, \mu)$, where μ is either \mathbb{C}^{*} or a finite cyclic subgroup of \mathbb{C}^{*}. The first case defines the Schur multiplier of G. In the interesting cases, μ is a finite group and the Schur multiplier does not provide information because the canonical map $H^{2}(G, \mu) \rightarrow H^{2}\left(G, \mathbb{C}^{*}\right)$ is not injective (see also Remark 3).

We note that Theorem 1 is a corollary of the following two well-known theorems.

Theorem 2 (Klein [4]). A finite subgroup of $\mathrm{PGL}_{2}(\mathbb{C})$ is isomorphic to one of the following polyhedral groups:

- a cyclic group C_{n};
- a dihedral group D_{n} of order $2 n, n \geqslant 2$;
- the tetrahedral group A_{4} of order 12;
- the octahedral group S_{4} of order 24;
- the icosahedral group A_{5} of order 60 .

Up to conjugation, all of these groups occur as subgroups of $\mathrm{PGL}_{2}(\mathbb{C})$ exactly once.

In Theorem 1, the cyclic groups C_{n} happen to be subgroups of $\gamma(B)$.
Theorem 3 ([3, Theorem 4.12]; [6, Theorem 4.29]). Suppose that G is an algebraic subgroup of $\mathrm{SL}_{2}(\mathbb{C})$. Then, up to conjugation, one of the following cases occurs:
(1) $G=\mathrm{SL}_{2}(\mathbb{C})$;
(2) G is a subgroup of the Borel group B;

https://daneshyari.com/en/article/4673188

Download Persian Version:

https://daneshyari.com/article/4673188

Daneshyari.com

[^0]: E-mails: k.a.nguyen@math.rug.nl (K. Nguyen), mvdput@math.rug.nl (M. van der Put), j.top@math.rug.nl (J. Top).

