EI SEVIER

Contents lists available at ScienceDirect

Cold Regions Science and Technology

journal homepage: www.elsevier.com/locate/coldregions

Thermo-hydro-salt-mechanical coupled model for saturated porous media based on crystallization kinetics

Daoyong Wu a,b, Yuanming Lai a,c,*, Mingyi Zhang a

- a State Key Laboratory Frozen Soil Engineering, Cold and Arid Region Environmental and Engineering Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
- ^b University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- ^c School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, People's Republic of China

ARTICLE INFO

Article history: Received 30 March 2016 Received in revised form 28 October 2016 Accepted 31 October 2016 Available online 03 November 2016

Keywords:
Saturated porous media
Crystallization kinetics
Saline frozen soil
Thermo-hydro-salt-mechanical coupled model

ABSTRACT

Crystallization is generally considered as the most destructive factor of porous material, but few studies have reported the coupling effects among fluid flow, heat transfer, crystallization and deformation in porous media. In this paper, the driving forces of phase transition were studied initially and then the crystallization kinetics models were established. Moreover, constitutive relations related to saline frozen soil were discussed, and the expression of unfrozen water content in non-equilibrium state was improved. Finally, a thermo-hydro-salt-mechanical coupled model for fully saturated saline frozen soil with phase change was proposed. Validation of the model is illustrated by comparisons between the simulation and experimental results. The predicted values of frost heave, temperature and moisture distribution are consistent with the experimental data, and it is demonstrated that the presented crystallization kinetics approach is valid for studying heat and mass transfer coupled problem with phase change in porous media.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The issue of porous media involves mutual coupling among deformation, seepage, heat transfer, mass migration and chemical reaction, which has been recognized gradually in engineering practice. The earlier hydrothermal models included hydrodynamic model (Harlan, 1973; Guymon and Luthin, 1974; Taylor and Luthin, 1978; Jame and Norum, 1980), rigid ice model (O'Neill and Miller, 1985; Sheng, 1994) and segregation potential model (Konrad and Morgenstem, 1980, 1981). The coupling of moisture and temperature can be obtained accurately from the hydrothermal models, but the variations of stress and corresponding deformation are difficult to describe. Therefore, researchers paid more attention to thermo-hydro-mechanical coupled model. Initially, the researchers (Glipin, 1980; Hopke, 1980; Mu and Ladanyi, 1987; Nixon, 1991) took into account the impact of external loads on the hydrothermal model, and then established their own models respectively. In recent years, with the development of mixture theory, many scholars (Fremond and Mikkola, 1991; Hartikainen and Mikkola, 1997; Lu et al., 2011) proposed the thermo-hydro-mechanical coupled model for frozen soil based on mixture theory. This THM model can well simulate water, temperature and stress in frozen soil, but cannot describe the mechanism of ice crystallization. Additionally, numerous complicated parameters limit the development and application of the THM model.

Dissolved salt can penetrate into building materials through the porous matrix and existing cracks (Derluyn, 2012). Salt crystallization in pore spaces generated high stress on the pore walls can also causes degradation of building materials (Nicolai, 2008). At present, mechanism of salt heave for saline frozen soil is not well understood; especially the multi-field coupled theory, involving salt crystallization and dissolution, is inadequate. Furthermore, large number of assumptions or approximations ignored the interaction between various conditions (Niu, 2006).

Many models mentioned above only present a theoretical framework, but lack corresponding numerical calculations. The others only performed numerical simulations without appropriate experimental verification. Therefore, providing a more complete thermo-hydro-salt-mechanical coupled model and the corresponding experimental verification is extremely important in theory. This paper studied the driving forces of phase change, and then established the crystallization kinetics models for crystal growth. Furthermore, constitutive relations related to saline frozen soil were discussed in detail. Based on crystallization kinetics, a thermo-hydro-salt-mechanical coupled mathematical model for fully saturated saline frozen soil with phase change was proposed. Finally, experimental and numerical calculation results were used to verify the accuracy of the model.

^{*} Corresponding author. E-mail address: ymlai@lzb.ac.cn (Y. Lai).

```
Nomenclature
Α
            Frequency factor (—)
a_s, a_s, s_{tart} Supersaturation ratio and its trigger value ( - )
            Water activity (—)
a_w
            Body force (N/m<sup>3</sup>)
h
            Mass concentration of dissolved salt and its saturated
C, C_{sat}
            value (kg/m<sup>3</sup>)
\Delta C_{p,wi}
            Specific heat capacity difference between water and ice
            (I/kg/K)
            Specific heat capacity of \alpha-phase (J/kg/K)
C_{p,\alpha}
            Apparent concentration of \alpha-phase (kg/m<sup>3</sup>)
C_{\alpha}
[D]
            Matrix of elastic constant (MPa)
D_{sd}
            Diffusion coefficient of dissolved salt (m<sup>2</sup>/s)
E_{c}
            Compression modulus (MPa)
F(\sigma', \varepsilon^{vp})
            Yield function
            Surface force (N/m<sup>2</sup>)
F_{c}
            Single molecule free energy decrease (J)
\Delta g_{\nu}
            Gibbs free energy (J)
\Delta G_{crit}, \Delta G_0 Nucleation work, activation energy (J)
\Delta G_{iw}, \Delta G_{sc} Free energy differences of phase change (J)
H_{sc}, H_{wc}, H_{wi} Enthalpy differences of phase change (J/kg)
\Delta_m H_{iw}^* Standard molar enthalpy of ice-water (J/mol)
            Unit tensor (−)
            Flux of dissolved salt and water (kg/m<sup>2</sup>/s)
J_s, J_w
            Heat flux (J/m<sup>2</sup>/s)
J_T
            Boltzmann constant (J/K)
k
K(T)
            Kinetics function (s^{-1})
K_{wi}, K_{iw}, K_{sc}, K_{cs} Rate constants (s<sup>-1</sup>)
            Intrinsic permeability tensor and its initial value (m<sup>2</sup>)
            Intrinsic permeability coefficient (m<sup>2</sup>)
k_{int}
            Relative permeability ( – )
L_{sc}, L_{wc}, L_{wi} Latent heats of phase change (J/kg)
            Molality of salt solution (mol/kg)
            Production rate of \alpha-phase (kg/m<sup>3</sup>·s)
M_{\rm H_2O}, Ms Molar mass of water and salt (kg/mol)
            Porosity, effective porosity and initial porosity (-)
n, n_e, n_0
            Mole number of solute (mol)
n_m
Ν
            Avogadro's number (mol<sup>-1</sup>)
            Pressures of \alpha-phase (Pa)
p_{\alpha}
\Delta p_{iw}, \Delta p_{cs} Pressure difference at crystalline and amorphous in-
            terface (Pa)
            Heat sources and sinks (W/m<sup>3</sup>)
Q(\sigma', \varepsilon^{vp}) Viscoplastic potential function
            Ideal gas constant (J/mol·K)
s_k (k = i, w) Molar entropy of species k (J/mol·K)
            Fusion entropy per unit volume crystal (J/m<sup>3</sup>·K)
\Delta s_{fc}
            Fusion entropy of ice-water (J/mol·K)
\Delta s_{iw}
            Energy variation caused by phase change
S_T
            Saturation degree of \alpha-phase (W/m<sup>3</sup>)
S_{\alpha}
            Temperature and supercooling (K)
T. \Delta T
T^*, T_0^*, \Delta T_0^* Freezing point of pore water, bulk water, and freezing
            point depression (K)
            Reference temperature (K)
T_{ref}
\mathbf{u}, u_x, u_y, u_z Displacement vector, and its component in x, y and z
            direction (m)
V_c
            Salt crystal volume in the system (m<sup>3</sup>)
            Absolute velocity of liquid (m/s)
v_l
\mathbf{v}_{\alpha}^{r}
            Relative velocity of \alpha-phase (m)
            Partial molar volume of \alpha-phase (m<sup>3</sup>/mol)
v_{m, \alpha}
v_M, v_X, v_w Stoichiometric number for positive ions M, negative
```

ions *X* and molecules of water (—)

 Z_{M^+}, Z_{X^-}

Charges of positive ion M and negative ion X

Linear thermal dilatation coefficient (K^{-1})

```
\gamma_{sf}, \gamma_{sf}^0
             Surface tensions of solution and pure water (N/m)
             Viscosity parameter (1/MPa·s)
\gamma_{vp}
\varepsilon, \varepsilon_0, \varepsilon^T, \varepsilon^{vp} Total, initial, thermal, viscoplastic strain(m/m)
ζ
             Supersaturation degree ( – )
             Dynamic viscosity of fluid (Pa·s)
\eta
             Residual unfrozen water content (m<sup>3</sup>/m<sup>3</sup>)
\theta_w^*
             Volumetric content of \alpha-phase (m<sup>3</sup>/m<sup>3</sup>)
\theta_{\alpha}
             Curvature of solid-liquid interface (m<sup>-1</sup>)
K_{Sf}
             Effective thermal conductivity (W/m·K)
\lambda_e
             Thermal conductivity of \alpha-phase (W/m·K)
\lambda_{\alpha}
             Chemical potential (J/mol)
μ
ξ
             Experimental parameter of surface tension related to type of
             salt J \cdot kg/(m^2 \cdot mol)
             Density of \alpha-phase (kg/m<sup>3</sup>)
\rho_{\alpha}
\sigma, \sigma'
             Total stress and effective stress (N/m<sup>2</sup>)
             Macroscopic crystallization stress (N/m<sup>2</sup>)
\sigma_0
\varphi(F)
             Scalar function (−)
              Ratios of solute and water in solution (-)
\chi_s, \chi_w
              Volume of a single molecule (m<sup>3</sup>)
Ω
             Mass fraction of dissolved salt and its saturated value (kg/kg)
\omega, \omega_{sat}
Subscripts \alpha
             Salt crystal
С
i
             Liquid
l
m
             Material matrix
             Pore
р
             Dissolved salt
S
w
             Water
```

2. Components in saturated saline frozen soil

The saline frozen soil is described as a multiphase continuous porous medium. In saturated condition, the gaseous phase is neglected, and the components are assumed to be comprised partly of liquid phase and solid phase. In reality, different types of salt and salt crystal forms may co-exist in the pore solution (Castellazzi et al., 2016). However, the main object of study in this paper is sodium sulfate because its destructivity is larger than that of other salts. Thus, only one type of salt and salt crystal (c) was considered, i.e., mirabilite (Na₂SO₄· 10H₂O), which greatly simplified this issue and established the foundation for further study on the situation that a variety of salt and salt crystals are co-exist in the soil. Thus, the liquid solution consists of liquid water (w) and dissolved salt (s). Ice crystals (i) may exist in the supercooling soil. The impact of material matrix (m) deformation on mass transfer cannot be neglected.

The total porosity, defined as the volume of voids per unit volume of porous medium, is denoted by n. The content of each component can be described by apparent concentration C_{co} defined as the mass of α in per unit volume of porous medium, or by the corresponding saturation degree S_{co} defined as the pore volume occupied by α :

$$C_{\alpha} = \theta_{\alpha} \rho_{\alpha} = n S_{\alpha} \rho_{\alpha} \tag{1}$$

where ρ_{α} is the mass density of α , and $\theta_{\alpha} = nS_{\alpha}$ is volume of α in per unit volume of porous medium, which satisfy the following relation:

$$\theta_m + \theta_w + \theta_s + \theta_i + \theta_c = 1 \tag{2}$$

The saturation degrees of all the components satisfy:

$$S_w + S_s + S_i + S_c = 1 (3)$$

Download English Version:

https://daneshyari.com/en/article/4675576

Download Persian Version:

https://daneshyari.com/article/4675576

<u>Daneshyari.com</u>