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This study dealswith nonlinear creep and the time taken for completion of the stress redistribution processwith-
in a borehole scenario. Specifically, the pressuremeter test, with emphasis on a step loading of long duration, in
ice saturated frozen soils is analyzed. A closed form stationary creep solution based on the model of a thick cyl-
inder under plane strain condition, that considers large strains, is first developed. Subsequently non-stationary
creep finite element analyses were carried out via this model and an assumption-relaxed model that considers
the actual geometry of a typical pressuremeter test (where the net cavity pressure is applied only on a portion
of the borehole cavity). Finally estimates of the extent towhich stress redistribution occurs is numerically consid-
ered by revisiting classical theories and proposing a time scale by introducing a redistribution index, RI.
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1. Introduction

The determination of constitutive equations for the analysis of foun-
dations in permafrost areas necessitates a suitable tool for in situ evalu-
ation of the rheological properties of frozen soils. In situ investigations
are advantageous when compared to laboratory measurements not
only for reasons related to the scale of the tests, but because soil proper-
ties are obtained with minimal physical and thermal disturbance of the
frozen ground.

As demonstrated in this theoretical study, the pressuremeter could
fulfill this role provided one accounts for the stress redistribution phe-
nomenon triggered by nonlinear creep of the frozen soil. In order to cor-
rectly interpret the creep field test results, a proper evaluation of a time
scale is necessary.

The borehole pressuremeter in frozen soils is best described in the
pioneer works of Ladanyi and Johnston (1973) and Ladanyi and St-
Pierre (1978). These studies were among the first in the area of frozen
ground engineering to address the issues of stress redistribution in the
early phase of a borehole creep test. Specifically they indicated that re-
liable results are obtained only if sufficient time is allowed for the stress
to redistribute. As a consequence, various authors have recommended
correction factors in order to time shift the resulting experimental
curves (Murat et al., 1989, Ladanyi and Huneault, 1987, Ladanyi and
Eckart, 1983). This task is extremely complicated because stress redis-
tribution is a nonlinear process that depends not only on the level of

the applied stress, but on the initial stress as well. For this reason,
Ladanyi and Huneault (1987) propose a correction factor which linear-
izes a revisited but modified form of the Calladine (1969) theory.

This paper examines the pressuremeter test with a special emphasis
on the phenomenon of stress redistribution in an ice saturated frozen
soil. The frozen soil is modeled as a nonlinear viscoelastic medium
Ladanyi (1972). This constitutive model is generally adopted for ice sat-
urated soils where experimental evidence suggests the absence of a
threshold stress upon which initiation of the creep process rests
(Foriero et al., 2005). A frozen ice saturated soil is regarded as a single
phase material where soil particles are more or less embedded in an
icematrixwhosemacroscopic behaviour is different than that of its con-
stituent components.

Generally, two quantitative parameters are used to describe the
ground ice conditions that leads to this macroscopic behaviour
(Khublaryan, 2009). The first is based on the ice content (the ratio of
the weight of the ice to that of the dry soil in percentage). Ice rich
soils have ice contents that normally range between 50 and 100%. The
second is based on the amount of excess ice. Excess ice refers to the
amount of supernatant water present (the volume of supernatant
water expressed as a percentage of the total volume of soil and water)
if a vertical column of frozen soil were thawed. A frozen soil that con-
tains excess ice is considered as an ice rich soil.

Particular attention to two different physical models of the
pressuremeter test is also addressed in this paper. The pressuremeter
test entails the drilling of a borehole into which an expandable probe
(Fig. 1) is introduced, thus producing axisymmetric loading and geom-
etry. Researchers generally interpret the problem as that of a thick
walled cylinder under a plane strain condition (Foriero and Ciza, 2016,
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Ladanyi and Foriero, 1998). This approach will be examined both
analytically and numerically within the context of stress redistribution.
The other physical model scrutinized in this work is to relax the
plane strain condition and model the pressuremeter test as closely as
possible to the conditions on site. In this case a numerical treatment
with respect to stress redistribution is also carried out. The primary
goal of this study is to determine realistic redistribution times in the
context of pressuremeter testing in frozen ice saturated soils. For this
reason, the implication of using a particular model over another is
discussed.

2. The implications of modeling the pressuremeter test as an
expanding cylindrical cavity

The general (three dimensional) partial differential equations of
equilibrium in cylindrical coordinates are given in terms of the Cauchy
stresses in the deformed state as
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where r is the distance from the axis of revolution (r ≥ 0 always), θ is the
circumferential coordinate and z is the axial coordinate directed along
the axis of revolution. In Eq. (1), the normal stresses σrr, σθθ and σzz

are directed respectively in the radial, circumferential and axial direc-
tions. The indicial notation adopted for a typical shear stress σij is that
the first index represents the direction (r, θ or z) of the normal to the
planewhere the stress is actingwhile the second index represents its di-
rection (r, θ or z). The components of the body forces per unit volume in
the r, θ and z directions are respectively fr, fθ and fz.

The pressuremeter test is defined as an axisymmetric problem be-
cause it consists of an inflatable probe that allows a given pressure to
be applied on a segment of the wall of a borehole. The resulting volume
increase of that segment of the hole is observed. Consequently, not only

is the geometry of the borehole cavity axisymmetric, but the loading
and the support conditions are rotationally symmetric. This means
that for an isotropic nonlinear viscoelastic medium all quantities of in-
terest are independent of the circumferential coordinate θ. Accordingly,
for the pressuremeter problem, Eq. (1) reduces to
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If one considers that a condition of plane strain exists in the central
section of the pressurized length, then the system represented by
Eq. (2), assuming zero body forces, reduces to the equilibrium equation
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where the traction boundary conditions in the deformed configuration
are given by

tr ≡ σ rrnr þ σ rznz ¼ σ rrnr
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with (nr, nz) denoting the components (or direction cosines) of the unit
normal vector on the boundary.

As mentioned previously most of the theoretical developments re-
garding the pressuremeter use the plain strain approach (Eq. 3) because
it is convenient. The reason being that a given cell pressure is assumed
to be applied fully on the cavity wall which is restrained from move-
ment in the vertical z direction. In practice this is not necessarily the
case. Amore realistic approach is to consider that the cell pressure is ap-
plied only on a segment of the wall of a borehole and consequently the
equilibrium Eq. (2) are more appropriate. However, a theoretical analy-
sis in this case is more complicated and consequently a numerical anal-
ysis using finite elements is usually adopted.

The implications of the previous assumptions will be examined in
this paper. A theoretical as well as a finite element analysis, in the con-
text of large strains, will provide the necessary results for the calculation
of the creep redistribution times.

In the next section, the plane strain approach (Eq. 3) will be exam-
ined analytically.

3. Kinematics of large strain deviatoric creep

This section details the theoretical development of the pressure-
meter problem based on large strain deviatoric creep. The assumption
is that the kinematic conditions associated with this condition are
based on a cylindrical cavity in a frozen soil mass which exhibits
incompressibility under a plane strain condition of flow.

It is convenient (Selvadurai, 1984; Selvadurai and Spencer, 1972;
Spencer, 1970) when a continuum undergoes flow, to describe the
motion of generic particles in body-fixed material coordinates Xi(xi,t),
(i = 1, 2, 3) and, for the same particles, space-fixed coordinates
xi(Xi,t), (i=1, 2, 3) of the deformed configuration. However, to describe
the kinematics of circular cylinders it is practical to use cylindrical polar
coordinates instead (Fig. 2). These are given in the reference (R, Θ, Z)
and deformed (r, θ, z) configurations as

X1 ¼ R cosΘ; X2 ¼ R sinΘ; X3 ¼ Z
x1 ¼ r cos θ; x2 ¼ r sin θ; x3 ¼ z:

ð6Þ

Fig. 1. A typical pressuremeter-probe geometry for insi-tu testing.

45A. Foriero, K. Robitaille / Cold Regions Science and Technology 132 (2016) 44–59



Download English Version:

https://daneshyari.com/en/article/4675603

Download Persian Version:

https://daneshyari.com/article/4675603

Daneshyari.com

https://daneshyari.com/en/article/4675603
https://daneshyari.com/article/4675603
https://daneshyari.com

