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The recent precipitous losses of summer Arctic sea ice have outpaced the projections of most climate models. A
number of efforts to improve these models have focused in part on a more accurate accounting of sea ice albedo
or reflectance. In late spring and summer, the albedo of the ice pack is determined primarily by melt ponds that
form on the sea ice surface. The transition of pond configurations from isolated structures to interconnected net-
works is critical in allowing the lateral flow of melt water toward drainage features such as large brine channels,
fractures, and seal holes, which can alter the albedo by removing the melt water. Moreover, highly connected
ponds can influence the formation of fractures and leads during ice break-up. Here we develop algorithmic tech-
niques formapping photographic images ofmelt ponds onto discrete conductance networkswhich represent the
geometry and connectedness of pond configurations. The effective conductivity of the networks is computed to
approximate the ease of lateralflow.We implement an image processing algorithmwithmathematicalmorphol-
ogy operations to produce a conductance matrix representation of the melt ponds. Basic clustering and edge
elimination, using undirected graphs, are then used to map the melt pond connections and reduce the conduc-
tance matrix to include only direct connections. The results for images taken during different times of the year
are visually inspected and the number of mislabels is used to evaluate performance.
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1. Introduction

Sea ice is a critical component of Earth's climate system and a sensi-
tive indicator of climate change. The dramatic losses of summer Arctic
sea ice observed in the past few decades have a substantial impact on
Earth's climate system, yet most global climatemodels have significant-
ly underestimated the rate of decline (Boé et al., 2009; Serreze et al.,
2007; Stroeve et al., 2007). One of the fundamental challenges of climate
science is to developmore rigorous representations of sea ice in climate
models and to incorporate important small scale processes and struc-
tures into these large scalemodels. For example, during themelt season
the Arctic sea ice cover becomes a complex evolving mosaic of ice, melt
ponds on the sea ice surface, and openwater. While white snow and ice
reflectmost incident sunlight, melt ponds and the ocean absorbmost of
it. The overall reflectance or albedo of sea icefloes – the ratio of reflected
to incident sunlight – is determined by the evolution of melt pond cov-
erage and geometry (Perovich et al., 2002; Polashenski et al., 2012; Scott
and Feltham, 2010). As melting increases, the albedo is lowered, which
increases solar absorption, leading to more melting, and so on. This key
mechanism is called ice–albedo feedback (Curry et al., 1995), and has
played a significant role in the decline of the summer Arctic ice pack

(Perovich et al., 2008; Pistone et al., 2014). Sea ice albedo is a significant
source of uncertainty in climate projections and one of the most impor-
tant parameters in climatemodeling (Flocco et al., 2010; Pedersen et al.,
2009; Polashenski et al., 2012; Scott and Feltham, 2010).

While melt ponds form a key component of the Arctic marine envi-
ronment, comprehensive observations or theories of their formation,
coverage, and evolution remain relatively sparse. Available observations
of melt ponds show that their areal coverage is highly variable. This is
particularly true for first year ice early in the melt season, with rates of
change as high as 35% per day (Polashenski et al., 2012; Scharien and
Yackel, 2005).

Such variability, as well as the influence of many competing factors
controlling melt pond and ice floe evolution, makes the incorporation
of realistic treatments of albedo into climate models quite challenging
(Polashenski et al., 2012). Small and medium scale models of melt
ponds which include some of these mechanisms have been developed
(Flocco and Feltham, 2007; Scott and Feltham, 2010; Skyllingstad
et al., 2009), and melt pond parameterizations are being incorporated
into global climate models (Flocco et al., 2010; Flocco et al., 2012;
Hunke and Lipscomb, 2010; Hunke et al., 2013; Pedersen et al., 2009).

Asmelting progresses during the season, the evolution ofmelt ponds
from small isolated structures into large interconnected networks is re-
sponsible for a number of processes that help control the rate at which
the ice pack melts. It is believed (Hohenegger et al., 2012) that this
evolution of connectedness is an example of a percolation transition
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(Christensen and Moloney, 2005; Stauffer and Aharony, 1992). Such a
transition occurs when one phase in the microstructure of a composite
material, for example, becomes connected on macroscopic scales as
a controlling parameter exceeds a critical value called the percolation
threshold (Broadbent and Hammersley, 1957; Christensen and Moloney,
2005; Stauffer and Aharony, 1992).

In the case of melt ponds the controlling parameter which gives rise
to critical behavior is thought to be the fraction of the area of the sea ice
surface covered by melt ponds.

An important example of critical behavior related to percolation
theory as applied to sea ice, and important for melt pond drainage,
comes from the study of fluid flow through the porous microstructure
of sea ice. Specifically, the brine microstructure displays a percolation
threshold at a critical brine volume fraction of around 5 % in columnar
sea ice (Golden et al., 1998; Golden et al., 2007; Pringle et al., 2009),
which corresponds to a critical temperature Tc ≈ −5 ° C for a typical
bulk salinity of 5 ppt. Below this threshold the brine phase of the
sea ice consists primarily of isolated, disconnected pockets. It is only
above the threshold where the brine phase becomes connected over
large scales. This threshold acts as an on-off switch for fluid flow
through sea ice, and is known as the rule of fives. It leads to critical be-
havior of fluid flow, where sea ice is effectively impermeable to fluid
transport for brine volume fractions below 5 % and increasingly perme-
able for volume fractions above 5 %.

In addition to identifying the critical behavior of fluid transport in
sea ice, the percolation theory of fluid and electrical transport through
lattices (Christensen and Moloney, 2005; Stauffer and Aharony, 1992)
was used to produce models of the fluid permeability of sea ice as
a function of brine volume fraction (Golden et al., 2007). In this work
X-ray computed tomography images of the brine microstructure of
sea ice were analyzed and mapped onto random graphs of nodes and
edges, in order to establish the percolative behavior of the system
(Golden et al., 2007; Pringle et al., 2009), and the rule of fives in
particular.

Other types of networkmodels have also been used to describe both
fluid and electrical transport in the brine phase of sea ice. For example,
in the randompipemodel, the diameters of randompipes, which repre-
sent brine channels in the ice, are chosen from lognormal probability
distributions that describe the cross-sectional areas of the brine inclu-
sions in sea ice and then assigned to the edges in a square lattice (Zhu
et al., 2006). The fluid permeability of the model is then computed by
using a random resistor network representation of the system and
employing a fast multigrid method to find its effective conductivity
which can then be related to the permeability. This same approach
can also be used to directly model the electrical conductivity of the
ice, an important parameter in remote sensing of sea ice thickness,
fluid transport properties, and microstructural transitions (Addison,
1969; Buckley et al., 1986; Fujino and Suzuki, 1963; Ingham et al.,
2008; Reid et al., 2006; Thyssen et al., 1974). Network models have
been used extensively in analyzing the transport properties of compos-
ite materials (Milton, 2002; Torquato, 2002).

It has been suggested that percolative behavior occurs for melt
ponds on the sea ice surface, As they cover more of the surface, discon-
nected, isolated ponds begin to evolve into large connected structures
with complex boundaries, presumably achieving large scale connectivity
above a critical area fraction (Hohenegger et al., 2012).

Increased connectivity of melt ponds promotes further melting
through increased heat transport, contributes to the break-up of ice
floes, and allows increased horizontal transport of meltwater toward
drainage avenues such as large vertical brine channels, cracks, leads,
and seal holes (Polashenski et al., 2012; Scharien and Yackel, 2005).
Other melt pond models including both vertical and horizontal trans-
port of melt water, such as a type of cellular automata, have been devel-
oped elsewhere, as in Scott and Feltham (2010).

In this work we begin to develop techniques for network modeling
of melt ponds, their connectivity, and horizontal flow characteristics.

Some of the groundwork for this type of modeling was laid in
Hohenegger et al. (2012). Images of melting Arctic sea ice collected
during twoArctic expeditions – the 2005Healy-Oden Trans Arctic Expe-
dition (HOTRAX) (Perovich et al., 2009) and the 1998 Surface Heat Bud-
get of the Arctic Ocean (SHEBA) expedition (Perovich et al., 2002) –
were analyzed for area–perimeter data on thousands of individual
melt ponds. Algorithmic methods of distinguishing melt ponds from
the ocean in leads between the sea ice floes were developed. This data
was used to discover that pond fractal dimension transitions from 1 to
2 around a critical length scale of 100 m2 in area (Hohenegger et al.,
2012). Pond complexity was found to increase rapidly through the
transition as smaller ponds coalesce to form large connected regions,
reaching a maximum for ponds larger than about 1000 m2 whose
boundaries resemble space filling curves.

In earlier work on melt ponds and sea ice albedo, image processing
has been used to measure the area fractions of melt ponds and leads
from aerial and satellite images. In Perovich et al. (2002) these area frac-
tions from June toOctober, using SHEBA images taken in 1998 (Perovich
et al., 2002), showhow the area fraction ofmelt ponds increases as sum-
mer progresses, and starts decreasing again at the end of summer as
new ice forms. A probability distribution for the size of melt ponds is
also derived from the data, which depends on the progress of the melt
season.

In the work reported here, the connectivity of these melt pond net-
works is determined using aerial images of Arctic sea ice from the
SHEBA and HOTRAX databases. We develop an algorithmic method of
mapping a configuration of melt ponds onto a graph of nodes and
edges. These melt pond configurations may be disconnected individual
components, or partially or completely connected across an image. The
edges are assigned values which indicate the width of “bottlenecks”
separating larger pools of melt water, which are identified with the
nodes of the graph.

The horizontal flow of water between melt ponds depends on the
narrowest bottlenecks between them and the width of these bottle-
necks is inversely proportional to the fluid conductance between them.

Mathematical morphology based image processing techniques
(Gonzalez and Woods, 2008) are used with a clustering algorithm and
graph theory to find a conductance graph associated with each melt
pond configuration studied. Further work will explore the relationship
of these graphs and associated conductance networks with the actual
flow of fluid in the pond network, and the effect on sea ice albedo.

2. Method

The images of melt ponds from the SHEBA and HOTRAX expeditions
are in color. The intensity and color of each pixel in the image are
encoded using the intensities of the Red, Green and Blue colors that
make up each pixel. The image is represented as a matrix of pixels,
with each pixel being a vector of three variables — red, green and blue
color values. These are called, respectively, the red, green and blue
channels of the image.

These images are converted to gray-scale to reduce each pixel to
only one intensity and lessen the number of computations required.
The gray scale image is derivedusing the red channel aswe see the largest
difference between ice and water there.

A simple thresholding operation, as described in the Appendix A, is
sufficient to segment themelt pondwater from ice and produce a binary
image. Otsu'smethod (Gonzalez andWoods, 2008) is used to determine
this threshold individually for each image, which is then segmented
based on this threshold. Fig. 1 shows a histogram of the intensity levels
of a gray-scale aerial image with Otsu's threshold. After having seg-
mented water from ice, it is also possible to use the blue color intensity
in the images to distinguish between the ocean water leads and melt
pond water. However, in this paper, we have selected images that do
not contain any ocean water leads.
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