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We present an inverse modeling approach for reconstructing the effective thermal conductivity of snow on a
daily basis using air temperature, ground temperature and snow depth measurements. The method is applied
to four sites in Alaska. To validate the method we used measured snow densities and snow water equivalents.
The modeled thermal conductivities of snow for the two interior Alaska sites have relatively low values and
reach their maximum near the end of the snow season, while the conductivities at the two sites on the Alaskan
North Slope are higher and reach their maximum earlier in the snow season. We show that the reconstructed
daily thermal conductivities allow for more accurate modeling of ground surface temperatures when compared
to applying a constant thermal conductivity for the snow layer.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Through its role as an insulator, snow cover plays a key role in the
Arctic climate system by controlling heat exchanges between the atmo-
sphere and the ground surface. This strongly influences the dynamics of
the active layer and underlying permafrost (e.g., Goodrich, 1982; Ling
and Zhang, 2004; Sazonova and Romanovsky, 2003; Shiklomanov and
Nelson, 1999; Zhang, 2005).Warming and thawing of near surface perma-
frost have already been observed in parts of the Arctic, and permafrost
degradation is expected to continue through the 21st century, with signif-
icant impacts on infrastructure and ecosystems (Callaghan et al., 2011;
Instanes and Anisimov, 2008; Oberman, 2008). A number of studies
point to the potential for a significant positive climate feedback related
to carbon release from thawing permafrost (Grosse et al., 2011; Schaefer
et al., 2011). Improving the veracity of projected changes in the active
layer and permafrost conditions requires better parameterization of
snow thermal properties, in particular, snow thermal conductivity. While
often assumed to be constant throughout the entire snowseason, in reality
snow thermal conductivity depends onmany factors, such as air and snow
temperatures, snow density, and grain structures, and hence varies with
time and position within the snow layer (Sturm et al., 1997).

Past studies of snow thermal conductivity have made use of field
observations, laboratory experiments, and theoretical frameworks
(e.g., Abel, 1893; Fukusako, 1990; Mellor, 1977; Pitman and Zuckerman,
1967; Sturm et al., 1997, 2002; Yen, 1962). Brun et al. (2013) and

Domine et al. (2013) recently employed physically-based approaches
making use of outputs from atmospheric reanalyses to simulate
snowpack properties and soil temperatures.

Here, we present an approach to simulate snow “effective” thermal
conductivities on a daily basis using the Geophysical Institute Permafrost
Laboratory (GIPL) numerical transient model (Jafarov et al., 2012;
Nicolsky et al., 2007; Sergueev et al., 2003). Effective conductivity
(hereafter simply referred to as conductivity) includes the combined
effect of conduction through the ice grains, conduction through the
air in the void spaces, and radiative exchange across the void spaces
(Anderson, 1976; Marks and Dozier, 1992; Morin et al., 2010). We use
an inverse modeling approach originally introduced by Tipenko and
Romanovsky (2002), and similar to that used by Sergienko et al. (2008).

The GIPL model simulates ground temperatures and the seasonal
freeze/thaw layer dynamics, and has been successfully validated against
ground temperature measurements in shallow boreholes across Alaska
(Jafarov et al., 2013; Nicolsky et al., 2009; Romanovsky and Osterkamp,
2000). The model incorporates the effects of air temperature, snow, soil
moisture and multi-layered soil thermal properties (Nicolsky et al., 2007;
Sergueev et al., 2003). We use as model input measurements collected
from four permafrost monitoring stations in Alaska, including snow
depth, air temperatures and ground temperatures and obtain time series
of snow thermal conductivity over the entire snow season. We show
that the obtained thermal conductivity values improve the simulation of
the ground surface temperature dynamics for the entire snow season.

Throughout the manuscript, we use the terms “estimated” and
“reconstructed” interchangeably. The term “estimated snow conductivity”
refers to the obtained snow conductivity as a result of using the inverse
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method, whereas the term “reconstructed” refers to the estimated snow
conductivity after a moving-average filter is applied. The estimated and
reconstructed values are marked by “ˆ” and “ˇ” signs, correspondingly.

2. Method

2.1. Physical model

The GIPL model solves the 1-D heat equation with phase changes
(Carslaw and Jaeger, 1959):

C
∂T x; tð Þ

∂t þ L
∂θ x; Tð Þ

∂T
∂T x; tð Þ

∂t ¼ ∂
∂x k

∂T x; tð Þ
∂x

� �
; ð1Þ

where T (x,t) is the temperature and L [Jm−3] is the volumetric latent
heat fusion of water. Here, t stands for time and x∈ (xu,xl) is the spatial
variable with the ground surface at x = 0. The upper boundary xu = xu
(t) depends on time in order to track the evolution of snow cover. The
quantity xu (t) is equal to the snow cover depth when snow is present,
or is zero otherwise. The lower boundary xl is fixed and represents a cer-
tain depth below the active layer. Eq. (1) is complementedwith boundary
conditions T (xu,t) = Tair and T (xl,t) = Tl, where Tair and Tl are observed
temperatures at the ground (snow) surface x = xu (t) and at the depth
x = xl, respectively. In permafrost models driven with data at daily time
step, air temperature at the snow surface is assumed to be the same as
the near-surface air temperature (Ling and Zhang, 2004; Westermann
et al., 2013). Additionally, we supply the initial conditions T (x,0) = T0
(x), where T0 (x) is the temperature at x ∈ [0,xl) at time t = 0. The
volumetric water content θ (x,T) for ground material 0 ≤ x b xl in
Eq. (1) is defined as:

θ x; Tð Þ ¼ η xð Þϕ T; xð Þ; ϕ T ; xð Þ ¼ 1; T ≥ T�
T�j jb Tj j−b

; T b T�
;

�
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where ϕ (T,x) represents the pore liquid water fraction, η (x) is the
soil porosity, T* is the so-called freezing point depression, and b is a
dimensionless parameter obtained from unfrozenwater curve fitting
(Romanovsky and Osterkamp, 2000). The volumetric water content
θ (x,T) in Eq. (2) for a snow layer is equal to zero, so θ (x,T) = 0 for
xu ≤ x b 0. The quantities k = k(x,T) [Wm−1 K−1] and C = C(x,T)
[Jm−3 K−1] are thermal conductivity and the volumetric heat capacity,
respectively, and are defined as follows:

C ¼ Cs; k ¼ ks; xub x b 0; ð3Þ

C ¼ Ctϕþ C f 1−ϕð Þ; k ¼ kϕt k
1−ϕ
f ; 0 ≤ x b xl ð4Þ

where Cs = Cs(t) and ks = ks(t) are the volumetric heat capacity and
bulk thermal conductivity of snow, respectively. The quantities marked
with the subscripts “t” and “f” represent effective thermal properties of
the ground material for the thawed and frozen states, respectively. The
modeled soil column consists of several layers, each having its own
thermal properties Ct, Cf, kt, and kf. Unlike the thermal properties of
snow, Ct, Cf, kt, and kf are assumed to be time-independent and to vary
only with depth.

The snow layer is represented as a homogeneous substance with
changing thickness during the snow season. To obtain the temperature
distribution within the snow layer, the GIPL model solves the heat
Eq. (1), where ks = ks(t) and Cs = Cs(t) are snow thermal parameters
that may change in time but do not change spatially. To simulate the
measured ground surface temperatures, it is therefore important to
assign proper daily snow thermal properties.

It is common to define snow heat capacity and thermal conductivity
with a function that depends on snowdensity, (e.g. Abel, 1893; Anderson,
1976; Ostin and Andersson, 1991; Yen, 1981). Goodrich (1982) and

Douville et al. (1995) represented snow heat capacity as a linear function
of snowdensity in order to calculate ground temperatures. Given that the
differences between the snow heat capacity equations used by Goodrich
(1982) and Douville et al. (1995) are not significant, we used Douville
et al. (1995):

Cs ¼ Ci � ρs=ρi; ð5Þ

where Ci is the heat capacity of ice, and ρs = ρs(t) and ρi [g·cm−3] are
densities of snow and ice respectively.

There are a variety of empirical methods for estimating the thermal
conductivity of snow ks as a function of density, summarized by Yen
(1969), and Sturm et al. (1997), and more recently by Calonne et al.
(2011), and Riche and Schneebeli (2013). Sturm et al. (1997) derived
an empirical relationship between snow density and conductivity
based on an overview of prior work and his own field observations.
More recent studies (e.g. Calonne et al., 2011; Riche and Schneebeli,
2013) introduce empirical relationships that better correspond with
the observed data. Since the difference between the formulas derived
from these two recent works is not significant we chose the empirical
relationship by Calonne et al. (2011):

ks ¼ 2:5ρ2
s−0:123ρs þ 0:024: ð6Þ

In the current model formulation both the thermal conductivity and
the heat capacity of snow depend on snow density. We run the GIPL
model by using a vertical domain starting from the ground/snow surface
xu(t) to a depth of xl = 1m, with a 0.01-m grid resolution.

2.2. Data assimilation technique

The intent of data assimilation is tominimize the difference between
the simulated andmeasured ground surface temperature. Note that the
computations of ground surface temperature rely onmodeling the heat
exchange below the ground surface. Nicolsky et al. (2007, 2009) showed
that the thermal properties of groundmaterial can be estimated by using
only the surface and sub-surface ground temperatures. Therefore, we as-
sume that the thermal properties kt, kf, Ct, Cf, the soil porosity η, and the
parameterization of the unfrozen water content T*,b are known and can
be utilized to simulate temperature dynamics below the ground surface.
Once the sub-surface thermal properties are found, the simulated ground
surface temperature effectively depends only on the thermal properties
of the snow cover. The latter can be parameterized by snow density ρs
according to Eqs. ((5)–(6)).

To find the densityρs, we use an inversemodeling approachoutlined
by Tarantola (2005). In such an approach, an objective function or cost
function JBT can be defined as

JBT ρsð Þ ¼ J1 ρsð Þ þ J2 ρsð Þ; ð7Þ

where JBT is the cost function J defined by Beck and Arnold (1977) (“B”)
and Tikhonov and Leonov (1996) (“T”), and

J1 ρsð Þ ¼ 1
δT2 Tm−T ρsð Þk k2 ¼ 1

δT2

1
t f

Zt f
0

Tm τð Þ−T 0; τ;ρs τð Þð Þð Þ2dτ: ð8Þ

Here, J1 is the discrepancy between the observed Tm = Tm(t) and
simulated T(ρs) = T(0,t; ρs(t)) ground surface temperatures. The latter
is computed according to Eq. (1) with a time-varying snow density
ρs(t), when snow covers the ground surface over the period [0,tf]. The
second term in Eq. (7) is the regularization term

J2 ρsð Þ ¼ 1
δρ2 ‖ρs−eρsk2 ¼ 1

δρ2

1
t f

Zt f
0

ρs τð Þ−eρs τð ÞÞ2dτ;
�

ð9Þ
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