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a b s t r a c t

The geodynamo is the process by which turbulent flow of liquid metal within Earth's core generates our
planet's magnetic field. Numerical simulations of the geodynamo are commonly used to elucidate the
rich dynamics of this system. Since these simulations cannot attain dynamic similarity with the
geodynamo, their results must be extrapolated across many orders of magnitude of unexplored
parameter space. For this purpose, scaling analysis is essential. We investigate the scaling behavior of
the typical length scales, ℓ, and speeds, U, of convection within a broad suite of geodynamo models.
The model outputs are well fit by the scalings ℓ∝E1=3 and U∝C1=2E1=3, which are derived from a balance
between the influences of rotation, viscosity, and buoyancy (E is the Ekman number and C the convective
power). Direct comparison with two previously proposed theories finds that the viscous scalings most
favorably describe model data. The prominent role of viscosity suggested by these scaling laws may call
into question the direct application of such simulations to the geodynamo, for which it is typically
assumed that viscous effects are negligible.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Earth's magnetic field is generated by flowing liquid metal
in its core. It is generally thought that this flow is driven by fluid
buoyancy, as the core slowly cools and differentiates. The resulting
convection generates electrical currents that maintain the geo-
dynamo, and is subject to two significant forces: the Coriolis force,
which stems from the Earth's daily rotation; and the Lorentz force,
which accounts for the back-reaction of magnetic field on the flow
from which it is generated. These key ingredients – field genera-
tion by rotationally constrained convection – are captured by self-
consistent geodynamo models. Conditions in the core, however,
are more extreme than any current simulation can possibly
replicate (e.g., Wicht and Tilgner, 2010).

In particular, core fluid dynamics suffer from an extreme range
of forces: Lorentz ∼ Coriolis ≫ inertia ≫ viscosity. Estimates of
the relative magnitudes of these forces can be quantified by non-
dimensional parameters. The Rossby number characterizes the
ratio between inertia and Coriolis forces in the core as Ro≈10−6.
The Ekman number quantifies the ratio between viscous and
Coriolis forces in the core as E≈10−15. Another extreme core
parameter is the magnetic Prandtl number, which is the ratio

between viscous and magnetic diffusion, Pm≈10−6. These and
other important dimensionless numbers are defined in Table 1.
The smallness of these parameters leads to an extreme range of
anticipated time and length scales important for core dynamics,
which cannot be resolved in present-day simulations (Davies
et al., 2011).

Since simulations are incapable of reaching the parameters
necessary for true dynamic similarity with the geodynamo, we
turn to scaling laws. Scaling laws depict the general behavior of
one parameter with respect to others within a particular dynami-
cal regime. There are two general purposes for developing and
testing scaling laws. First, comparing theoretically founded scaling
laws with observations in nature, experiments, or simulations
tests our understanding of the basic physical processes responsible
for producing these observations. Second, extrapolation of well-
tested scaling laws, even without firm theoretical basis, permits
predictions of phenomena we cannot directly observe.

Beginning with Glatzmaier and Roberts (1995), simulations of
the geodynamo have proliferated such that there now exists an
extensive population of results that permits the systematic scaling
of their behavior (e.g., Christensen and Aubert, 2006; Olson and
Christensen, 2006; Christensen, 2010; King et al., 2010; Jones,
2011). Here, we apply to such dynamo models a theoretical scaling
law for average convective flow speeds. The scaling law, recently
proposed for simpler, non-magnetic convection simulations (King
et al., 2013), is based on a steady state balance between buoyant
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energy production and viscous dissipation. The important influ-
ence of rotation is revealed through its selection of the typical
length scales of convective cells, which is a critical factor in setting
the dissipation rate. Following King et al. (2013), we present
hydrodynamic scaling laws for typical speeds and length scales
of convection, U and ℓ, in Sections 3 and 4, and test these
predictions against a suite of geodynamo simulations, which are
introduced in Section 2. In Section 5, we compare these results
against other proposed scaling laws. Finally, in Section 6, we
discuss the implications of the preceding results.

2. Numerical dynamo models

The numerical dynamo model outputs analyzed here come
from a suite of simulations carried out by Christensen using the
MagIC numerical model (Christensen et al., 1999; Christensen and
Aubert, 2006; King et al., 2010). In the model, the governing
equations (momentum conservation equation, magnetic induction
equation, heat advection–diffusion equation, and mass conser-
vation) are evolved using the spectral transform method of
Glatzmaier (1984) in a spherical shell with Earth-core-like geo-
metry. Conditions enforced on inner and outer boundaries are
constant temperature and zero flow. The outer boundary is
electrically insulating, and, for almost all of the models used here,
the inner core is also taken to be an insulator. The data set used
here is identical to the “dynamo factory models” of King et al.
(2010), consisting of 159 individual models, many of which were
also used for scaling analysis by Christensen and Aubert (2006),
Olson and Christensen (2006), and Christensen (2010). The para-
meter ranges accessed by the dynamo suite are given in Table 1.

Typical flow speeds are calculated as

U ¼ 〈u2〉1=2 ; ð1aÞ
where u is the fluid velocity, angled brackets represent averages
over the entire spatial domain, and overlines represent averages in
time. Characteristic length scales of flow are calculated as the
mean scale for kinetic energy (Christensen and Aubert, 2006)

ℓ¼ π〈u2〉

∑l〈u2
l 〉
D; ð1bÞ

where ul is the velocity at harmonic degree l, and D is the shell
thickness (see Table 1).

3. Flow speeds: the mean kinetic energy equation

The equation governing fluid momentum in a rotating refer-
ence frame for Boussinesq magnetoconvection is

ρ0ð∂tuþ u � ∇uÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
inertia

þ 2ρ0Ω� u|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Coriolis

¼ −∇P|ffl{zffl}
pressure

þ ρ′g|{z}
buoyancy

þ J � B|fflffl{zfflffl}
Lorentz

þ ρ0ν∇2u|fflfflfflffl{zfflfflfflffl}
viscosity

;

ð2Þ
where ρ0 is the mean fluid density, Ω is the rotation vector, P is the
pressure (which includes hydrostatic gravitation and the centrifu-
gal force), ρ′ is the density anomaly, g ¼ gr̂ is the gravitational
acceleration, J is the electrical current density, B is the magnetic
field, and ν is the viscous diffusivity. The labels under each term in
(2) will be used to identify them below. The system is considered
Boussinesq in that density, ρðr; tÞ ¼ ρ0 þ ρ′ðr; tÞ, is treated as vari-
able only in its contribution to the buoyancy force.

A particularly simple but exact relation for Boussinesq convec-
tion is the mean kinetic energy equation. Produced by the scalar
product of velocity u with the momentum equation (2), averaging
in time and integrating over the fluid volume V, the mean kinetic
energy equation isZ
V

urρ′g þ 1
μ0

B � ðB �∇Þu−ρ0νω2

� �
dV ¼ 0; ð3aÞ

where ur is the radial component of velocity and ω¼∇� u is the
vorticity. This particular form of the mean kinetic energy equation
assumes no-slip boundaries. According to (3a), kinetic energy is
produced by buoyant power

P ¼
Z
V
urρ′g dV ; ð3bÞ

by a generic source(s) of buoyancy, which is expended by the
Lorentz work

QL ¼ −
Z
V

1
μ0

B � ðB � ∇Þu dV ; ð3cÞ

and viscous dissipation

ϵν ¼
Z
V
ρ0νω2 dV : ð3dÞ

Soderlund et al. (2012) argue that magnetic fields have a
secondary influence on convective flow speeds in geodynamo
models, citing a relatively weak Lorentz force in several simula-
tions (which are similar to the simulations considered here).
We follow from this suggestion and assume that Lorentz forces
are unimportant for the typical magnitude of convective flow
speeds in the models. The validity and geophysical relevance of
this assumption are discussed in Section 6. Thus, in order to scale
the flow speed, kinetic energy production is balanced with viscous
dissipation

P∼ϵν ð4Þ
Vorticity is taken to scale as U=ℓ, such that ϵν can be scaled as
ρ0νU

2V=ℓ2. The viscous balance (4) then suggests flow speeds scale as

U∼

 
Pd2
νρ0D

3

!1=2

: ð5Þ

In order to test this scaling against model outputs, we revert to
dimensionless quantities for purely thermal convection. Total
convective power P is related to the convective heat flow PT by

PT ¼ ρ0cPAurT ′≈
cP
αgD

P; ð6aÞ

where cP is the specific heat, A is the surface area through which
the heat power is fluxed, T ′ is the anomalous temperature, and
α is the thermal expansivity. We make P non-dimensional by

Table 1
Relevant dimensionless numbers, estimates of values in Earth's core, and the range
of values reached in numerical simulations. Dimensional quantities are ν, viscosity;
Ω, angular rotation rate; D, shell thickness; ρ′=ρ0, fractional density anomaly; g,
gravity; κ, thermal diffusivity; η, magnetic diffusivity; P, convective power; A,
outer boundary surface area; U, typical flow speed; B, magnetic field strength;
μ0, permittivity of free space. An estimate of Pr for the core depends on whether
the buoyancy source considered is thermal (Pro1) or compositional (Pr41).
An estimate of Ra in the core depends on the poorly constrained superadia-
batic density contrast between inner core and mantle, and so a value is not
specified.

Symbol Name Definition Core Simulations

E Ekman ν=ΩD2 10−15 10−6 ≤E≤10−3

Ra Rayleigh ρ′gD3=ρ0νκ 3� 105 ≤Ra≤2:2� 109

Pr Prandtl ν=κ 0:1≤Pr ≤30
Pm Magnetic Prandtl ν=η 10−6 0:06≤Pm≤20
C Convective power PD3=Aρ0ν3 1031 3� 104 ≤C≤6� 1010

Re Reynolds UD=ν 109 10≤Re≤2000
Ro Rossby U=2ΩD 10−6 10−4 ≤Ro≤0:8
Λ Elsasser B2=ρ0μ0ηΩ 1 0:03≤Λ≤300
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