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a b s t r a c t

We report lattice thermal conductivities of MgO and MgSiO3 in the perovskite and post-perovskite

structures at conditions of the Earth’s lower mantle, obtained from equilibrium molecular dynamics

simulations. Using an advanced ionic interaction potential, the full conductivity tensor was calculated

by means of the Green–Kubo method, and the conductivity of MgSiO3 post-perovskite was found to be

significantly anisotropic. The thermal conductivities of all three phases were parameterized as a

function of density and temperature. Assuming a Fe-free lower-mantle composition with mole fractions

xMgSiO3
¼ 0:66 and xMgO ¼ 0:34, the conductivity of the two-phase aggregate was calculated along a

model geotherm. It was found to vary considerably with depth, rising from 9.5 W/(m K) at the top of the

lower mantle to 20.5 W/(m K) at the top of the thermal boundary layer above the core–mantle

boundary. Extrapolation of experimental data suggests that at deep-mantle conditions, the presence of

a realistic amount of iron impurities lowers the thermal conductivity of the aggregate by about 50%

(Manthilake et al., 2011a). From this result and our thermal conductivity model, we estimate the heat

flux across the core–mantle boundary to be 10.8 TW for a Fe-bearing MgO/MgSiO3 perovskite aggregate

and 10.6 TW for a Fe-bearing MgO/MgSiO3 post-perovskite aggregate.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The thermal conductivity of minerals in the Earth’s mantle is
an important geophysical parameter which governs the heat flux
from the core up to the surface and hence strongly influences
mantle dynamics (Naliboff and Kellogg, 2007). Moreover, the
thermal conductivity of minerals at the core–mantle boundary
(CMB) determines the amount of heat extracted from the core,
driving the convection of the liquid outer core and thus control-
ling the power available to the generation of the Earth’s magnetic
field (Davies, 2007; Aubert et al., 2009). Yet, measuring thermal
conductivities at mantle pressures and temperatures is extremely
challenging, and the experimental data are scarce. Several
schemes exist to extrapolate thermal conductivities measured at
lower pressures and temperatures to deep-mantle conditions
(Ross et al., 1984; Hofmeister, 1999), but they are plagued with
large uncertainties. Hence a computational approach is desirable
to evaluate thermal conductivities directly at the relevant condi-
tions. The aim of this study is to provide reliable values for the
lattice thermal conductivities of MgO, MgSiO3 perovskite (Pv) and

post-perovskite (PPv) at lower-mantle conditions and their varia-
tion with temperature and density (or pressure). These results can
be directly applied to thermal transport in the lower mantle.

In deep-mantle minerals, heat is conducted by phonons and
electromagnetic radiation. The importance of the radiative contribu-
tion to thermal transport in the Earth is under debate, and current
estimates span a considerable range: while Goncharov et al. (2009)
report a radiative thermal conductivity below � 0:5 W=ðm KÞ across
the lower mantle, Stamenković et al. (2011) predict � 5 W=ðm KÞ at
the CMB, and Keppler et al. (2008) even values of up to
� 10 W=ðm KÞ, which is of the same order of magnitude as the
lattice contribution. Moreover, the radiative conductivity seems to
depend strongly on crystal grain size and on the iron content
(Hofmeister and Yuen, 2007). In view of these difficulties, we focus
on the lattice contribution in this study. If the radiative conductivity
turns out to be significant, it can simply be added to the lattice part
presented here.

Over the past years, different atomic-scale methods were
developed to calculate lattice thermal conductivities. Stackhouse
et al. (2010) applied the non-equilibrium or ‘‘direct’’ method
(Müller-Plathe, 1997; Nieto-Draghi and Avalos, 2003) to derive
the thermal conductivity of MgO, using molecular dynamics (MD)
simulations based on density functional theory (DFT). In this
approach, an energy current from the cold to the hot side of the
simulation cell is imposed. From this current and the steady-state
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temperature gradient which builds up, the thermal conductivity
is obtained via Fourier’s law. While computationally rather
efficient, the method suffers from strong finite-size effects, thus
requiring extrapolation to infinite system size and introducing
considerable uncertainties (Sellan et al., 2010). An approach based
on phonon lifetimes, obtained from DFT, was used by de Koker
(2009, 2010) and by Tang and Dong (2010) to calculate the
thermal conductivity of MgO. Phonon lifetimes were either
calculated from line widths in the Fourier transform of the
velocity autocorrelation function (de Koker, 2009) or from anhar-
monic lattice dynamics (Tang and Dong, 2010). Combined with
the Boltzmann transport equation for the phonon gas, they yield
the thermal conductivity in the relaxation time approximation.
This approach treats the anharmonicity of lattice vibrations
perturbatively and is thus limited to temperatures where atomic
displacements from the equilibrium positions are small enough
for higher-order anharmonicity to be neglected.

A third approach, the Green–Kubo method, uses the Green–
Kubo relations (Kubo, 1957) to obtain thermal conductivities from
appropriate current correlation functions, which, in turn, are
readily extracted from equilibrium MD trajectories. This method
has been successfully applied to solids (e.g. Volz and Chen, 2000;
Sellan et al., 2010; Esfarjani and Chen, 2011) and liquids (e.g.
Galamba et al., 2007; Ohtori et al., 2009b; Salanne et al., 2011). In
contrast to the non-equilibrium method, no concerns about
leaving the linear-response regime arise for equilibrium MD.
Moreover, the Green–Kubo method exhibits a weaker finite-size
effect (Sellan et al., 2010), provides the full thermal conductivity
tensor in one simulation and takes into account thermoelectric
effects which can contaminate results of the non-equilibrium
method for ionic conductors (Salanne et al., 2011). Unlike the
lattice dynamics approach, the Green–Kubo method takes into
account anharmonicity to all orders. Thus its validity is not
restricted to low temperatures. In the light of these advantages,
we decided to use the Green–Kubo approach to calculate thermal
conductivities of MgO, MgSiO3 Pv and MgSiO3 PPv at conditions
spanning a wide pressure and temperature range. We also
determined conductivities at conditions where experimental data
are available, and satisfactory agreement with these experiments
makes us confident that our results are equally reliable at CMB
conditions. A drawback of the method is that it requires long run
durations (in the nanosecond range) to obtain reasonable statis-
tical accuracy. Our calculations are based on classical MD simula-
tions involving an interaction potential of first-principles
accuracy (Jahn and Madden, 2007).

2. Theory

The thermal conductivity tensor l is defined by Fourier’s law,
jQ ¼�lrT , under the constraint that no mass or electric currents
are present. This constraint is relevant to electronic or ionic
conductors, where thermoelectric effects occur (Callen, 1985).
Fourier’s law is of linear-response type and relates the heat
current density jQ to the temperature gradient rT . For cubic
and orthorhombic crystals, l is diagonal if the coordinate axes are
along the crystal axes, and direction-dependent conductivities
can be defined by

la ¼�jaQ=raT , aAfx,y,zg ð1Þ

In the framework of non-equilibrium thermodynamics (Callen,
1985; de Groot and Mazur, 1984), the thermal conductivity can be
expressed in terms of kinetic coefficients LAB, as is done in
Eqs. (3) and (4). They determine the linear response of the system
to deviations from equilibrium, i.e. energy and mass flows
resulting from thermal and chemical gradients. The gist of the

Green–Kubo method is that the kinetic coefficients LAB, although
representing non-equilibrium behavior, are linked to fluctuations
in thermodynamic equilibrium via the fluctuation–dissipation
theorem. The kinetic coefficients, and hence the thermal con-
ductivity, can therefore be obtained from equilibrium MD by
means of appropriate Green–Kubo formulae, which relate the
linear response of a system with volume V to current correlation
functions in thermodynamic equilibrium

LabAB ¼ lim
t-1
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where kB is Boltzmann’s constant, and JaA are the Cartesian
components of the energy current (A¼U) or of the mass currents
(A¼ 1, . . . ,N�1, where N is the number of chemical species in the
system), with respective dimensions of energy or mass times
velocity. Angular brackets denote an ensemble average. We
assume that the center of mass is at rest, hence there are only
N�1 independent mass currents for a system with N chemical
species. Then, for a system with two species, the thermal
conductivity is given by Galamba et al. (2007)
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and for a system with three species by Salanne et al. (2011)

la ¼
1

T2
LaaUU�

ðLaaU1Þ
2Laa22þðL

aa
U2Þ

2Laa11�2LaaU1LaaU2Laa12

Laa11Laa22�ðL
aa
12Þ

2

 !
ð4Þ

It is worth noting that Eqs. (3) and (4) are written here in terms of
mass currents, whereas they were originally derived in terms of
ionic currents.

3. Simulation details

We performed equilibrium molecular dynamics simulations in
the NVT ensemble, with a time step of 1 fs for the integration of
the equation of motion and a Nosé–Hoover thermostat (Nosé,
1984; Hoover, 1985) maintaining the system at the desired
temperature. The cell dimensions were chosen as the average
cell size in a previous NPT run at the desired pressure P,
maintained by a barostat (Martyna et al., 1994). The interactions
between atoms were described by an advanced ionic interaction
potential which was parameterized non-empirically, using DFT as
a reference (Jahn and Madden, 2007). This potential has been
shown to reliably predict properties of minerals of the system
CaO–MgO–Al2O3–SiO2 over a wide temperature and pressure
range, with accuracy comparable to DFT. In particular, the ionic
interaction potential used in this study was shown to describe
MgO and the MgSiO3 phases perovskite and post-perovskite well,
predicting lattice constants to within 1% and elastic constants
mostly to within 10%, compared to DFT results (Jahn and Madden,
2007). The elastic constants determine vibrational modes of the
crystal in the limit of long wavelengths (Ashcroft and Mermin,
1976). These modes close to the Brillouin zone center, in turn, are
expected to make the largest contribution to the thermal con-
ductivity of the crystal (Tang and Dong, 2010). Therefore, we
expect the interaction potential to produce accurate lattice
dynamics and thermal transport properties. For MgO, MgSiO3

Pv, and MgSiO3 PPv, we used cubic or orthorhombic supercells
containing 512, 960, and 720 atoms, respectively. For each
composition, temperature, and pressure, we generated trajec-
tories of at least 0.5 ns and up to 2.4 ns.

At each time step of the MD run, the mass currents for each
species and the energy current were extracted for later calculation of
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