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This article reports the influence of dihedral angle in a partiallymoltenaggregate on its effective elastic properties
using theoretical techniques. For a given mineral assemblage, dihedral angles can vary widely depending on the
composition of themelt. Our results indicate thatwettingmeltswith low dihedral angles have a lower fraction of
intergranular contact area, contiguity, reducing the effective elastic moduli. An important consequence of this
effect is that the seismic signature of an aggregatewith a small volume fraction of awettingmeltwill be similar to
that of an aggregate containing a larger volume fraction of less wetting melt. Inferring the extent of melting in
seismic ultralow velocity zones, therefore, needs to incorporate the influence of melt composition via the
influence of dihedral angle.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Earth's deep interior is characterized by a number of low seismic
velocity zones. As they pass through these regions, both S and P wave
velocities decline greatly, with S waves slowing down more than P
waves. A number of thin patches of such ultralow velocity zones (ULVZ)
have been observed at the Earth's core–mantle boundary (Hutko et al.,
2009; Rost and Revenaugh, 2003; Rost et al., 2005; Williams and
Garnero, 1996). Typically, the magnitude of the velocity reductions in
the ULVZ is ascribed to the melt volume fraction or the degree of
melting. A body of recent theoretical and experimental works
demonstrates that the fractional area of intergranular contact, contigu-
ity, of a partially molten aggregate exerts the primary control on their
effective elastic properties (Hier-Majumder, 2008; Takei, 1998, 2000,
2002).While themelt volume fraction or the degree ofmelting controls
the contiguity of a partially molten aggregate, other controls on the
contiguity are also capable of influencing the seismic velocities.

Besides contiguity, another important textural quantity in partially
molten rocks is the dihedral angle at grain–melt interfaces. The dihedral
angles in a given mineral matrix are sensitive to the chemical
composition of the melt. For example, under upper mantle conditions,
basaltic melts subtend a dihedral angle of approximately 34° (Cooper
and Kohlstedt, 1982) while an aqueous fluid subtends an angle of 76°
(Hier-Majumder and Kohlstedt, 2006), in an olivine-rich matrix. A
recent compilation of laboratory experiments on the steady-state

microstructures indicate that the contiguity in partially molten rocks
display a systematic variation with dihedral angles (Yoshino et al.,
2005). Such a variation in contiguity and dihedral angle also influences
the seismic velocities of these melt and fluid bearing rocks. Evidence
from direct measurement of seismic velocity in partially molten
analogue materials with controlled dihedral angles, also supports this
inference (Takei, 2000). In aggregates with low dihedral angles, both
shear and Pwaves travel slower than through aggregates containing the
same melt fraction but a higher dihedral angle (Takei, 2000). These
experimental results indicate that besides the degree of melting,
variation inmelt composition (throughdihedral angle) canalso produce
a distinct seismic signature.

Following a recent work (Hier-Majumder, 2008), this article explores
the correlation between the dihedral angle and contiguity in a partially
molten aggregate. The model incorporates dynamic interaction among a
number of contiguous grains surrounding a melt pocket in two
dimensions. Interfacial tension along grain–grain and grain–melt inter-
faces excites aviscousflowin the interiorof thegrains and themeltpocket
until a steady-state microstructure is reached (Hopper, 1990, 1993a,b;
Kang, 2005; Kuiken, 1993).The viscous flow within the grains, part of a
process namedviscous sintering, is controlled by the conservationofmass
andmomentumwithin each grain and themelt pocket, supplemented by
suitable boundary conditions. We employ a boundary integral formula-
tion to solve the governing nonlinear equations in a hexagonal grain
geometry. This numerical solution is also supplemented by an analytical
solution for pressure, velocity, and steady-state grain shape in an
aggregate with a four-fold packing symmetry. Contiguity and dihedral
angles measured from the numerical experiments are compared with
experimental measurements of contiguity by Yoshino et al. (2005).
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Finally, we calculate the elastic moduli and seismic velocities of the
aggregates from the numerical models, and discuss the implications for
Earth's deep interior. The results from our numerical models are also
compared to the directmeasurement of the influence of dihedral angle on
seismic velocity by Takei (2000).

2. Methods

A detailed derivation of the formulation is presented in a previous
article (Hier-Majumder, 2008). Only essential equations are outlined
here. In this article, we present two sets of solutions. In one set of
analysis, we present analytical solutions for the velocity, pressure, and
steady-state shape of a grain immersed in the melt and acted upon by
surface tension, representing a four-fold symmetry. In the second set,
we present a two-dimensional numerical solution for the steady-state
shape of amelt pocket surrounded by three grains. Governing equations
for each case is described in Section 2.1. Sections 2.2 and 2.3 outline the
new features of the numerical model and the method used to measure
contiguity and dihedral angles from our numerical experiments.

2.1. Governing equations

Consider a collection of N viscous grains immersed in a viscous
melt. The shape of the k-th grain is described by the function
Fkðr; tÞ = 0, where r is the position vector. Conservation of mass and
momentum within each grain and the melt are given by

∇⋅ui = 0; ð1Þ

∇⋅Ti = 0; ð2Þ

where T
i and ui are the stress tensor and velocity vector within the k-

th grain (i=k) or melt (i=m). The stress tensor is related to viscosity
μi and pressure Pi by the linear constitutive relation,

T
i = −Pi

I + μi ∇ui + ð∇uiÞT
� �

; ð3Þ

where I is the identity matrix.
The governing equations are solved with a no-slip boundary

condition on the interface, Γk, of the k-th grain, (Kim and Karilla, 2005;
Leal, 1992; Pozrikidis, 2001)

u
k = u

m
: ð4Þ

In addition, traction across the grain interface is supported by the
force balance boundary condition (Leal, 1992, Ch. 5),

ΔTk⋅n̂k + I−n̂
k
n̂
k

� �
⋅∇γ−γn̂k ∇⋅n̂k

� �
= 0; ð5Þ

where ΔTk is the difference in stress across the surface of the k-th grain,
γ(r) is the interfacial tension, and n̂

k is the unit normal vector. The first
term in Eq. (5) arises from the difference in traction across the interface,
the second term arises due to variation of surface tension along the
interface, and the last term arises from curvature driven surface tension
force, where the principle curvature of the interface is given by ∇⋅n̂k
(Kim and Karilla, 2005; Leal, 1992; Pozrikidis, 2001). The tensor
I−n̂

k
n̂
k

� �
extracts the surface parallel component of the gradient in

surface tension. The normal component of the vector Eq. (5) consists of
the first and the last terms, indicating that the normal traction is
balanced by curvature and the surface tension. This condition is also
known as the Laplace condition. The tangential component of the
boundary condition consists of the first two terms, indicating variation
of tension along the surface is balanced by a drop in the shear stress
across the boundary. This is known as theMarangoni effect (Leal, 1992).

Finally, the change in the shape of the k-th grain with time is
constrained by the kinematic condition,

∂Fk

∂t + u
k⋅∇Fk = 0: ð6Þ

In the steady-state, textural equilibrium is attained and the first
term on the left hand side of Eq. (6) becomes zero.

The surface unit normal n̂
k depends on the unknown shape

function Fk of the k-th particle. Consequently, Eq. (5) is strongly
nonlinear. In the following two sections we present a linearized
equation governing the shape of each grain and a numerical technique
for solving the nonlinear equations by converting the differential
equations into a boundary integral equation.

2.1.1. Analytical solution
Consider a grain, immersed in the melt. In the first order, influence

of the surrounding grains on this grain is manifested by an alteration
of the surface tension at the intergranular contact (Hier-Majumder,
2008). Variation of the surface tension along the interface of the grain
leads to a drop in shear stress and drives Marangoni flow, until the
steady-state is reached. For simplicity, we assume that the unper-
turbed shape of an isolated grain immersed in melt is spherical. In the
limit of small deformation, a small perturbation of the spherical shape
takes place.

In the spherical polar coordinate system, assuming axial symme-
try, the shape distortion takes place only along the colatitude, θ. Thus,
the shape of the grain is given by

FðrÞ = r−a−� f ðθÞ; ð7Þ

where f(θ) is an unknown shape function, a is the radius of the initial
sphere, and �≪1, is a constant. The unit normal at a point on the
surface of this perturbed shape is,

n̂ =
∇FðrÞ
j∇FðrÞj = r̂−�∇f ðθÞ; ð8Þ

where r̂ is the unit radial vector. The deviation from the unperturbed
state is caused by introducing a small perturbation γ1(θ) to the surface
tension,

γ = γ0 + � γ1ðθÞ; ð9Þ

where γ0 is the interfacial tension in the unperturbed state. Since γ0 is
constant, the velocities within the grain and the melt are zero in the
unperturbed state, rendering the zeroth order stress jump condition
in Eq. (5) as

ΔP0 =
2γ0

a
: ð10Þ

The analytical solution to theperturbed pressures, velocities, and the
shape function in Eqs. (1), (2), and (6), are obtained by using Lamb's
solutions techniques (Lamb, 1895), outlined in Appendix B. In brief, the
pressures and velocities within the grain and in the melt are expanded
in a series of harmonic functions with four unknown coefficients. The
coefficients are determined from four boundary conditions: (1) conti-
nuity of tangential velocity at the grain–melt interface, zero normal
velocity of the (2) grain and (3) themelt at the grain–melt interface, and
(4) the tangential component of the force balance boundary condi-
tion (5). The solutions thus obtained, provide information regarding the
velocity and the pressure fields, but the perturbed shape function f(θ)
still remains to be solved.

We prescribe the perturbed surface tension γ1(θ) as a sum of
Legendre polynomials and expand the shape function f(θ) in a series of
unknown functions. Substituting the pressure and velocity obtained
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