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Measuring cognitive load changes can contribute to better treatment of patients, can help

design effective strategies to reduce medical errors among clinicians and can facilitate user

evaluation of health care information systems. This paper proposes an eye-based automatic

cognitive load measurement (CLM) system toward realizing these prospects. Three types

of  eye activity are investigated: pupillary response, blink and eye movement  (fixation and

saccade). Eye activity features are investigated in the presence of emotion interference,

which is a source of undesirable variability, to determine the susceptibility of CLM systems

to  other factors. Results from an experiment combining arithmetic-based tasks and affective

image  stimuli demonstrate that arousal effects are dominated by cognitive load during task

execution. To minimize the arousal effect on CLM, the choice of segments for eye-based

features is examined. We  then propose a feature set and classify three levels of cognitive

load.  The performance of cognitive load level prediction was found to be close to that of

a  reaction time measure, showing the feasibility of eye activity features for near-real time

CLM.

©  2012 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Interest in including cognitive technology in clinical practice
has seen an increase in recent years. Common applications are
the use of cognitive tests to assess the deficit when impair-
ments occur in central nervous system neuropathology [40],
for example, head injury [1],  Schizophrenia [2],  long-term alco-
hol abuse [3],  Alzheimer disease and related disorders [4],  to
name a few. Moreover, cognitive assessment can also be of
benefit in screening discharge patients [5] and in construction
of individualized rehabilitation strategies [2],  since cognitive
skills are associated with daily living and social activities. As
Spaulding et al. [2] have suggested, “a cognitive technology
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can be perfected that would contribute significantly to diag-
nosis, treatment and rehabilitation planning, evaluation of
patients’ response to treatment, and the design of future treat-
ment modalities”. Although the specification of function to be
measured is different, evidence shows those aforementioned
diseases or disorders are associated with memory  capability
[2–4]. Since cognitive load occurs as a result of the limited
working memory  available during a task [35], measuring cogni-
tive load on patients in the cognitive tests can offer insights for
patient treatments. For example, high cognitive load and short
stimulus duration were found to create a critical performance
distinction for schizophrenic patients [36].

Other applications include reducing medical errors due to
high memory  load on clinicians in the context of emergency
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department. Studies have showed that the interruptions
(cause information loss) and multitasking induce high cog-
nitive load that contributes to medical errors [37]. Solutions
proposed include using electronic tools to support adaptive
process [37] on site and providing effective training [38] before-
hand to reduce the cognitive load in work place.

Another focus is on evaluation of clinical information sys-
tems. Approaches are based on usability engineering and
cognitive task analysis to ensure low cognitive load involved
in use of such systems while users are carrying out tasks [39].

The development of an automatic cognitive load mea-
surement (CLM) system is thus motivated by assessing user
(patient) dynamic cognitive load, using psychophysiological
and behavioral signals. Conventional methods for CLM, in par-
ticular subjective assessment, reaction time and performance
(accuracy) cannot provide satisfactory results in all situations
as they rely on overt responses without adequate temporal
sensitivity, which they assume that users (patients) are willing
to provide [6].

One fundamental problem that has limited the use of psy-
chophysiological and behavioral signals for CLM to date is the
presence of artifacts due to other mental resource demands
[28]. Task-focused mental activity is not the only possible
source of variation manifested in psychophysiological and
behavior signals. For example, speech, heart rate variability,
GSR and respiration are reported as effective features not only
in CLM but also in emotion recognition and stress detection
(e.g. [14,15]). For affective data, emotion is often elicited by
stimuli with the task performance as a function of emotional
state or as appraisals of a situation [16]. When collecting cog-
nitive load data, task difficulty is carefully controlled with
neutral (i.e. non-emotive) stimuli and emotional stimuli are
avoided. An interesting question is what would happen to
the psychophysiological and behavioral signals when users
(patients) are performing a cognitive task and are subject to
concurrent emotional stimuli. Such a question has important
considerations in practice, where emotions and cognitive load
cannot be expected to occur in isolation as they often do in the
research laboratory – how should cognitive load classification
systems be built that are robust to such types of variability?

The work in this paper is novel in (i) assessing eye pat-
tern changes during tasks with emotional stimuli, with a view
to validating eye activity-based CLM; (ii) recognizing the eye
activity patterns for five levels of induced cognitive load, there
by going beyond simply distinguishing low and high cogni-
tive load levels; (iii) determining the eye feature dependence
on arousal factors and the appropriate measurement timing
for reliable load level estimation during task execution with
interference from other sources.

2.  Eye  activity  background  and  related  work

2.1.  Advantage  of  using  eye  activity  for  CLM

Four arguments are forwarded in favor of using eye activ-
ity patterns for CLM: (i) eye activity contains three classes
of eye information, but still uses one sensor for data collec-
tion. Pupil dilation is a physiological signal whose changes are
due to autonomic nervous system activity in the peripheral

nervous system. Eye blink is a behavioral signal [17] (some
papers also call it a psychophysiological response [19]) con-
trolled by the central nervous system (CNS). Fixation and
saccade are encoded by neural signals from cortical and sub-
cortical systems. The different mechanisms could measure
various underlying processes responsible for different aspects
of cognitive activity. (ii) Eye activity is more  ubiquitous than
other modalities: we are free to use our eyes everywhere
and anytime. (iii) Pupillary response and eye blink have been
shown to correlate with both visual and aural cognitive tasks
[9,17], thus can be applied in broad scenarios. (iv) Eye activity
data collection is less intrusive than other physiological signal
data collection. For example, eye tracking technology has been
demonstrated to follow eye activity remotely [9].

2.2. Pupillary  response

The basic function of pupil diameter change is to protect the
retina (the light reflex) and also to respond to a shift in fixa-
tion from far to near objects (the near reflex). Changes that
reflect variations in cognitive activities are relatively small
compared with the changes due to light reflex and near reflex.
In addition, the light reflex results in a relatively rapid pupil-
lary response [20]. Therefore, if objects have nearly constant
depth in the user’s (patient’s) visual field, we  can consider the
task-evoked pupillary response to comprise the low frequency
components in the pupillary response spectrum.

Over a few decades of research on pupillary response,
researchers still do not agree whether the pupil is a mea-
sure of emotional arousal or mental effort. Empirical studies
found that pupil size increases as participants are exposed
to more  arousing images and sounds, regardless of valence
[21,22]. Early research [23] on arousal and cognition attempted
to manipulate some arousal factors while controlling the cog-
nitive demands of tasks. They concluded that cognitive factors
have a higher priority than the arousal factors in affecting
pupil dilation. The arousal effect in pupillary response was
not observed in sentence listening and addition tasks but only
in the low cognitive load task, listening to countdown num-
bers [23]. However, in that experiment, tasks were controlled
in auditory presentation and arousal levels were manipulated
by the proximity of the stimulus (a word) to the subject of
the sentences, reward or threat of electrical shock. The effect
of auditory-induced emotion might be transient and not be
as strong as in visual presentation, and the auditory based
cognitive load might be higher compared with visual tasks,
therefore we used affective images to induce controlled emo-
tional effects.

2.3.  Eye  blink

Eye blinks occur only two to four times per minute for
functional purposes [17]. There are other, non-functional
types: reflexive blink (a protective response, e.g. to a puff
of air), voluntary blink (a purposeful response depends on
one’s will) and endogenous blink (unconsciously occurs).
The majority of eye blink behaviors are endogenous blinks,
which are centrally controlled and have a link to cognition
[17,20], therefore this type of blink is used for CLM. During
a task-centered scenario, voluntary blinks can be avoided by
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