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a b s t r a c t

This paper provides theoretical estimates that quantify and clarify the savings associated
to the use of element-level static condensation as a first step of an iterative solver. These
estimates are verified numerically. The numerical evidence shows that static condensation
at the element level is beneficial for higher-order methods. For lower-order methods or
when the number of iterations required for convergence is low, the setup cost of the
elimination as well as its implementation may offset the benefits obtained during the
iteration process. However, as the iteration count (e.g., above 50) or the polynomial order
(e.g., above cubics) grows, the benefits of element-level static condensation are significant.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Within the Finite Element (FE) community, the term static condensation of interior degrees of freedom refers to the
Gaussian elimination of the element interior bubble functions arising from high-order discretizations [1]. Other terms such
as Guyan condensation (reduction) can also be found in the literature to refer to the same set of linear algebra operations [2].
Static condensation can also be interpreted as a partial LU factorization of the interior degrees of freedom, as a first step of
a specific substructuring technique, or as a partial orthogonalization of basis functions [3].

Interpreted in any of these forms, static condensation constitutes a fundamental building block for direct solvers and
delivers significant performance improvements [4–6]. In high-order methods such as the p- and hp-FE methods, interior
degrees of freedom are eliminated first, leading to a reduced system (called Schur complement) that is subsequently LU
factorized. This static condensation step ensures the elimination of interior degrees of freedom before starting the LU
factorization of the skeleton problem, thereby providing often better performance than that achieved with traditional
ordering techniques, as shown in [7]. It also explainswhy thosematrices lacking a structure that enables static condensation
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(e.g., higher-continuous basis functions as those used in meshless methods [8], reconstructing kernel element methods [9],
and isogeometric analysis [10]) typically require a significantly larger number of floating point operations in order to be
factorized [5].

While the use of static condensation in direct solvers is always beneficial [11], its use with iterative solvers is more
controversial. Some authors postulate that static condensation should always be the starting point of any iterative solver,
while others refrain from doing so, since it adds some complexity to the implementation. Even when static condensation is
unused, most iterative solvers for p- and hp-FE methods still perform some type of elimination (or a spectrally equivalent
operation) of local interior bubble functions (cf., [12–17]).

The key point, however, is to determine how profitable it is to explicitly build the Schur complement of element bubble
functions (as performed in static condensation) and eliminate the corresponding unknowns from the global system before
performing iterations with respect to keeping the local LU-factorized matrices as part of the preconditioner without ever
computing the Schur complement. In other words, the distinguishing feature between iterative solvers that employ partial
LU factorizations versus those that perform static condensation before executing an iterative solver is that the latter explic-
itly build the Schur complement and eliminate interior bubble functions from the global matrix rather than only evaluating
their action over a given residual.

This paper provides quantitative estimates about the profitability of using static condensation before employing an
iterative solver.We corroborate these estimateswith numerical experiments in two and three spatial dimensions. Numerical
experimentation also enlightens the behavior on the pre-asymptotic regime. As a result, we describe those situations in
which the use of static condensation is most beneficial. To quantitatively compare both methods, we present floating point
operations (FLOPs) estimates that also provide interesting clues for the design of optimal hybrid solvers [18].

In order tomake this analysis tractable and easy to follow,wemake several assumptions, which are described in Section 2
along with our model problem. Section 3 presents precise theoretical complexity estimates illustrating the advantages
and limitations of using static condensation for each particular discretization. We describe the implementation details in
Section 4 and we present numerical results confirming the estimates in Section 5. Section 6 describes the conclusions of our
study and suggests future research lines in the topic.

2. Model problem and assumptions

Our starting point is the following algebraic system of linear equations:

Ax = b, (1)

where A is a non-singular real-valued N × N sparse matrix, b is the right-hand side, and x is the solution vector.
In this work, we assume that the systemmatrix A is associated to a regular quadrilateral or hexahedral grid coming from

a finite element discretizationwith uniform order of approximation p andwith the same number of elements in each spatial
direction. When the number of elements in each direction is substantially different, then the problem complexity reduces
to that given by a lower dimensional problem.

In our estimates and computations, we avoid taking advantage of orthogonal basis functions, i.e., we consider all
contributions originating from a trial and a test function with shared support as nonzero (a.k.a. ‘‘logical nonzero entry’’),
despite the fact that the actual values could indeed be zero. In arbitrarily mapped elements (non-affine) and/or in complex
bilinear forms, logical nonzero entries are indeed different from zero.

We assume that the number of iterations needed to solve a given problem before static condensation is of the same order
as that needed after static condensation. A large family of iterative solvers complies with this assumption, as shown in the
Appendix.

We further assume that the cost of building the preconditioner associated to the skeleton problem is negligible, since
the number of unknowns in the skeleton problem is O(p) times smaller than those in the interiors of the elements. In the
case of a multigrid solver, we also assume that the coarse-grid correction has a negligible cost, since it consists of solving a
smaller-size problem.

For simplicity, we restrict our attention to boundary value problems (with Dirichlet boundary conditions) that are
governed by second order partial differential equations (PDEs) of the form:

−∇ · (c1∇u) + c2∇u + c3u = f in Ω,
u = u0 on Γ = ∂Ω,

(2)

where c1 is a symmetric positive definite tensor, c2 a vector, and c3 a scalar function, f is the right-hand side, u is the solution,
u0 is the Dirichlet data, and ∇ , ∇· are the gradient and divergence operators, respectively. c1, c2, and c3 are bounded and
spatially varying so they may also incorporate the Jacobian of a transformation from the reference elements to a deformed
geometry [19,20]. We also assume that the coefficients are such that the above problem has a unique solution.

The variational formulation of problem (2) is given by (see e.g., [21]):
Find u ∈ u0 + V such that,
b(u, v) = l(v) ∀v ∈ V ,

(3)
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