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a b s t r a c t

In this paper, we study the numerical solution of optimal control problems governed by a
system of convection–diffusion PDEs with nonlinear reaction terms, arising from chemical
processes. The symmetric interior penalty Galerkin (SIPG) method with upwinding for
the convection term is used as a discretization method. We use a residual-based error
estimator for the state and the adjoint variables. An adaptive mesh refinement indicated
by a posteriori error estimates is applied. The arising saddle point system is solved using
a suitable preconditioner. Numerical results are presented to illustrate the performance of
the proposed error estimator.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal control problems governed by scalar or coupled partial differential equations (PDEs) have a number of appli-
cations in mathematical and physical problems. The equations model a chemical or biological process where the species
involved are subject to diffusion, convection and reaction among each other [1–3].We consider the followingmodel problem

A + B � C,

which obeys the law of mass action. To simplify the discussion, we assume that the backward reaction C → A + B is negli-
gible and that the forward reaction proceeds with a constant (e.g., not temperature dependent) rate. This leads to a coupled
convection dominated system for the respective concentrations; see (2) later on.

Let Ω be an open, bounded polygonal domain in R2 with Lipschitz-continuous boundary Γ = ∂Ω , let fi, βi, αi, ud,
vd, gi be given functions, and let εi, γi, ωu, ωv, ωc be given nonnegative diffusion, nonlinear reaction, and regularization
parameters, respectively, for i = u, v. We here consider a class of distributed optimal control problems governed by a
system of convection dominated PDEs

min J(u, v, c) =
ωu

2
∥u − ud

∥
2
L2(Ω) +

ωv

2
∥v − vd∥2

L2(Ω) +
ωc

2
∥c∥2

L2(Ω), (1)

subject to

−εu1u + βu · ∇u + αuu + γuuv = fu + c inΩ, (2a)
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−εv1v + βv · ∇v + αvv + γvuv = fv inΩ, (2b)
u = gu v = gv on Γ , (2c)

where u and v refer to the concentration of the reactants. In an optimal control context, we refer to them as state variables,
to c as the control variable and to (2) as the state system. The control c enters our state system (2) as a source term for the
first reactant u.

In large chemical systems, the nonlinear reaction terms γiuv are assumed to be expressions given as product of the con-
centrations of the chemical component u and v with an exponential function of the temperature, called Arrhenius kinetics
expression [3]. As an example, the rate of conversion of u and v in the reaction

u + v → products

can be expressed as

k0e−
E

RT uv,

where u and v are the concentrations of the reactants, pre-exponential factor k0, the activation energy E, the universal gas
constant R, and T is the absolute reaction temperature. We would like to emphasize that the extension of anything derived
in this paper to more than two reactants is straightforward. Therefore, we restrict ourselves to two reactants in order to not
obscure the presentation by technicalities.

Problems of the form (2) are strongly coupled such that inaccuracies in one unknown directly affect all other unknowns.
Therefore, prediction of these unknowns is very important for the safe and economical operation of biochemical and
chemical engineering processes. Typically, in (2) the size of the diffusion parameters εi is small compared to the size of
the velocity fields βi. Then, such a convection–diffusion system is called convection-dominated.

For convection-dominated problems, especially in the presence of boundary and/or interior layers, the standard finite
element methods may result in spurious oscillations causing in turn a severe loss of accuracy and stability. Therefore, we
need special techniques to eliminate spurious oscillations. One way to avoid spurious oscillations is the artificial viscosity
proposed in [4], which is used inmany numerical techniques, i.e., streamline upwind Galerkinmethod (SUPG) discretization
in [5] for linear convection dominated problems and in [6] for nonlinear convection dominated problems, and symmetric
interior penalty Galerkin (SIPG) discretization in [7] for scalar and/or coupled convection dominated problems with non-
linear reaction terms. Although adding artificial viscosity reduces spurious oscillations, the accuracy of numerical solutions
is not enhanced due to the additional artificial cross-wind diffusion. Another approach is to use adaptive mesh refinement
producing generally better accuracy with fewer degrees of freedom.

Adaptive mesh refinement is particularly attractive for the solution of optimal control problems governed by convection
dominated PDEs since both state and adjoint PDEs are convection dominated, but the convection term of the adjoint PDE
is the negative of the convection term of the state PDE. As a consequence, errors in the solution can potentially propagate
in both directions. Adaptivity allows a local mesh refinement in a certain region of the given domain, where the solution is
discontinuous or more difficult to approximate, using an a posteriori error estimator or indicator, see e.g., [8]. A posteriori
error estimates are computable quantities in terms of the discrete solutions without the knowledge of exact solutions.
They are essential in designing algorithms to generate a mesh equidistributing the computational effort and optimizing
the computation. Residual-type a posteriori error estimators for convection dominated optimal control problems have been
studied in [9–12], but they all use continuous finite element discretizations. The results in [13] show that discontinuous
Galerkin (DG) discretizations enjoy a better convergence behavior for convection dominated optimal control problems since
optimal convergence orders are obtained if the error is computed away from boundary or interior layers, in contrast to the
streamline upwind PetrovGalerkin (SUPG) stabilized finite element discretization [14]. DGmethods have several advantages
for the solution of the systems of conservation laws [15] over other types of finite element methods. For example, the
trial and test spaces are very easy to construct; they can naturally handle inhomogeneous boundary conditions and curved
boundaries; and they have flexibility in handling non-matching grids and in designing hp-adaptivemesh refinement. One of
the other attractive features of DGmethods is the very natural treatment of the convective operators through the stabilizing
inter-element jump elements. This avoids the need for cumbersome interior stabilization terms. We would like to refer
to [16–19] for discontinuous Galerkin methods in details. DG discretizations have been used in [20–24] for distributed
linear optimal control problems governed by convection dominated problems. Our aim here is to extend the adaptive mesh
refinement in [21,23], which yields more narrowly refined regions around the layers than the SUPG discretization does,
to the optimal control problems governed by a system of convection–diffusion PDEs with nonlinear reaction terms as in
(1)–(2).

Here, we consider a class of distributed optimal control problems governed by a system of convection dominated
PDEs. Similar optimal control problems without convection terms in the constraints have been discussed in [25–28]. The
optimal control problem (1)–(2) can have different local minima since it is a nonconvex programming problem. Therefore,
while deriving error estimations, we assume a reference solution (ũ, ṽ, c̃) satisfying the first- and second-order optimality
conditions, which can be derived as in [25,27]. We here apply an inexact Newton method to deal with the nonlinearity of
the state system (2). We also propose an effective preconditioner to solve the saddle point system arising from Newton’s
method.
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