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a b s t r a c t

In this article, we develop a two-grid algorithm based on the mixed finite element (MFE)
method for a nonlinear fourth-order reaction–diffusion equation with the time-fractional
derivative of Caputo-type.We formulate the problem as a nonlinear fully discreteMFE sys-
tem, where the time integer and fractional derivatives are approximated by finite differ-
ence methods and the spatial derivatives are approximated by the MFE method. To solve
the nonlinearMFE systemmore efficiently,we propose a two-grid algorithm,which is com-
posed of two steps: we first solve a nonlinear MFE system on a coarse grid by nonlinear
iterations, then solve the linearized MFE system on the fine grid by Newton iteration. Nu-
merical stability and optimal error estimate O(k2−α

∆ +hr+1
+H2r+2) in L2-norm are proved

for our two-grid scheme,where k∆,h andH are the time step size, coarse gridmesh size, and
fine grid mesh size, respectively. We implement the two-grid algorithm, and present the
numerical results justifying our theoretical error estimate. The numerical tests also show
that the two-grid method is much more efficient than solving the nonlinear MFE system
directly.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this article, we consider solving a nonlinear fourth-order reaction–diffusion problem with time-fractional derivative

∂u
∂t

−
∂α1u
∂tα

− 1u + ∆2u + f (u) = g(x, t), (x, t) ∈ Ω × J, (1.1)

which satisfies the boundary condition

u(x, t) = 1u(x, t) = 0, (x, t) ∈ ∂Ω × J̄, (1.2)

and initial condition

u(x, 0) = u0(x), x ∈ Ω, (1.3)
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where Ω is a bounded Lipschitz polyhedron of Rd (d = 2, or 3) with boundary ∂Ω , and J = (0, T ] is the time interval. The
source term g(x, t) and the initial function u0(x) are some given functions, the nonlinear reaction term is f (u) = u3

− u,
and ∂αp(x,t)

∂tα with α ∈ (0, 1) is defined by the following Caputo fractional derivative

∂αp(x, t)
∂tα

=
1

Γ (1 − α)

 t

0

∂p(x, τ )

∂τ

dτ
(t − τ)α

. (1.4)

The fourth-order reaction–diffusion problems appear in many scientific fields, e.g., traveling waves of reaction–diffusion
systems, propagation of domainwalls in liquid crystals and pattern formation of bistable systems. Many numerical methods
have been developed for solving the time-dependent fourth-order reaction–diffusion equations, cf. [1,2] and references
cited therein. In [1], a mixed finite element (MFE) method based on the backward Euler method is studied and a priori error
analysis is given. In [2], the optimal error bounds for a MFE method based on a special interpolation operator have been
obtained for a fourth-order reaction–diffusion problem and a fourth-order elliptic equation. Based on the standard fourth-
order reaction–diffusion problem [2,1,3], the nonlinear time-fractional fourth-order reaction–diffusion system (1.1) with
α-order is proposed. It is easy to see that when α goes to 0, Eq. (1.1) is reduced to a standard fourth-order reaction–diffusion
equation. On the other hand, when α is close to 1, the problem (1.1) can be regarded as a fourth-order reaction–diffusion
system with viscous term.

In recent years, developing various numerical algorithms for solving fractional partial differential equations (FPDEs)
has received much attention. The popular numerical methods for FPDEs include finite element methods [4–15], finite
volume/element methods [16–18], finite difference methods [19–23,16,24–33], discontinuous Galerkin methods [34–37],
and spectral methods [38–42], etc. To our best knowledge, there exist only a few papers on numerical methods for the
fourth-order FPDEs. In [36], a one-dimensional time-fractional fourth-order problem was solved by a local discontinuous
Galerkin method. Recently, a linear time fractional fourth-order diffusion equation solved by the finite element method
was investigated in [13]. Here, we develop and analyze a two-grid algorithm for solving the nonlinear time-fractional
reaction–diffusion system (1.1).

The two-grid method was proposed by Xu [43,44]. In [43], a two-grid discretization technique based on finite element
method was proposed for a semilinear elliptic boundary value problem. In [44], some finite element discretization
techniques based on two (or more) subspaces for nonlinear elliptic partial differential equations were studied. The
initial successful application of the two-grid technique for nonlinear elliptic problems inspired many further studies and
applications of the two-grid methods. Dawson, Wheeler and Woodward [45] discussed a two-grid method based on
MFE system for nonlinear parabolic equations. Xu and Zhou [46] solved the eigenvalue problems by using a two-grid
discretization scheme. Marion and Xu [47] studied a two-grid method for solving semilinear parabolic equations. Chien
and Jeng [48] applied a two-grid scheme for semilinear elliptic eigenvalue problems. Chen et al. [49], Chen et al. [50], Wu
and Allen [51], and Liu et al. [52] gave some different analysis on two-grid algorithm using expandedMFEmethods for some
nonlinear partial differential equations. Chen and Chen [53] discussed a two-grid method for nonlinear reaction–diffusion
equations by using MFE methods. Chen and Liu [54] presented a finite volume element method based on a two-grid
algorithm for solving the second-order nonlinear hyperbolic equations. Bajpai and Nataraj [55] developed a two-grid finite
element scheme combined with Crank–Nicolson scheme for the equations of motion arising in the Kelvin–Voigt model. In
all, we are unaware of any work using the two-grid method for (1.1). The novelty and major achievement of this paper is
that we successfully extend the two-grid method to solve the complicated two-dimensional time-fractional fourth-order
problem by the MFE method. Optimal convergence rate in both time and space is proved.

In this article, we propose a two-grid algorithm for solving the nonlinear time-fractional fourth-order reaction–diffusion
system (1.1) by using MFE method. We formulate a nonlinear fully discrete MFE system, where the integer derivative ∂u

∂t
is approximated by a second order backward difference method, while the time-fractional derivative is approximated by
a difference scheme with the convergence order k2−α

∆ , and the spatial discretization is handled by using MFE method. The
nonlinear coupled system is solved by using two-grid method. We first solve a nonlinear MFE system on a coarse grid, then
solve a linearized MFE system on a fine grid. Numerical stability and error estimate are proved on both the coarse grid and
fine grid. More specifically, we prove the optimal space–time convergence O(k2−α

∆ + hr+1
+ H2r+2) in the L2-norm. Finally,

numerical results are presented to support our theoretical analysis.
The rest of the paper is organized as follows. In Section 2, we present a two-grid algorithm combined with the MFE

scheme in the spatial direction and an implicit two step backward difference scheme in the temporal direction. In Section 3,
we carry out the stability analysis for both the coarse grid and fine grid. In Section 4, we prove the optimal a priori error
estimate for both the coarse grid and fine grid. In Section 5, we present the numerical results obtained by both the two-grid
algorithm and the MFE method. In Section 6, we conclude the paper with some remarks.

Throughout this article, we denote C > 0 as a generic constant, which is independent of the fine grid mesh size h, coarse
grid mesh size H , and the time step size k∆. Furthermore, we define the inner product in (L2(Ω))d by (·, ·) equipped with
norm ∥ · ∥, and the standard Sobolev space Hk(Ω) (or Hk

0(Ω)) equipped with norm ∥ · ∥k.

2. The two-grid algorithm based on MFE method

To approximate both the integer and fractional derivatives in the temporal direction, we assume a uniform partition
0 = t0 < t1 < t2 < · · · < tNk∆

= T of the time interval [0, T ], where tn = nk∆, n = 0, 1, . . . ,Nk∆ . The time step size
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