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a b s t r a c t

Dimension reduction is often needed in the area of data mining. The goal of these methods
is tomap the given high-dimensional data into a low-dimensional space preserving certain
properties of the initial data. There are two kinds of techniques for this purpose. The
first, projective methods, builds an explicit linear projection from the high-dimensional
space to the low-dimensional one. On the other hand, the nonlinear methods utilizes
nonlinear and implicit mapping between the two spaces. In both cases, the methods
considered in literature have usually relied on computationally very intensive matrix
factorizations, frequently the Singular Value Decomposition (SVD). The computational
burden of SVD quickly renders these dimension reduction methods infeasible thanks to
the ever-increasing sizes of the practical datasets.

In this paper, we present a new decomposition strategy, Reduced Basis Decomposition
(RBD),which is inspired by the ReducedBasisMethod (RBM). GivenX the high-dimensional
data, themethod approximates it by Y T (≈ X)with Y being the low-dimensional surrogate
and T the transformation matrix. Y is obtained through a greedy algorithm thus extremely
efficient. In fact, it is significantly faster than SVD with comparable accuracy. T can be
computed on the fly. Moreover, unlike many compression algorithms, it easily finds the
mapping for an arbitrary ‘‘out-of-sample’’ vector and it comes with an ‘‘error indicator’’
certifying the accuracy of the compression. Numerical results are shown validating these
claims.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Dimension reduction is ubiquitous in many areas ranging from pattern recognition, clustering, classification, to fast
numerical simulation of complicated physical phenomena. The fundamental question to address is how to approximate
a n-dimensional space by a d-dimensional one with d ≪ n. Specifically, we are given a set of high-dimensional data

X = [x1, x2, . . . , xn] ∈ Rm×n, (1)

and the goal is to find its low-dimensional approximation

Y = [y1, y2, . . . , yd] ∈ Rm×d (2)

with reasonable accuracy.
There are two types of dimension reductionmethods. The first category consists of ‘‘projective’’ ones. These are the linear

methods that are global in nature, and that explicitly transform the data matrix X into a low-dimensional one by Y = X T .
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The leading examples are the Principal Component Analysis (PCA) and its variants. The methods in the second category act
locally and are inherently nonlinear. For each sample in the high-dimensional space (e.g. each column of X), they directly
find their low-dimensional approximations by preserving certain locality or affinity between nearby points.

In this paper, inspired by the reduced basis method (RBM), we propose a linear method called ‘‘Reduced Basis
Decomposition (RBD)’’. It is much faster than PCA/SVD-based techniques. Moreover, its low-dimensional vectors are
equipped with error estimator indicating how close they are approximating the high-dimensional data. RBM is a relative
recent approach to speed up the numerical simulation of parametric Partial Differential Equations (PDEs) [1–5]. It utilizes
an Offline–Online computational decomposition strategy to produce surrogate solution (of dimension N) in a time that
is of orders of magnitude shorter than what is needed by the underlying numerical solver of dimension N ≫ N (called
truth solver hereafter). The RBM relies on a projection onto a low dimensional space spanned by truth approximations at
an optimally sampled set of parameter values [6–10]. This low-dimensional manifold is generated by a greedy algorithm
making use of a rigorous a posteriori error bounds for the field variable and associated functional outputs of interest which
also guarantees the fidelity of the surrogate solution in approximating the truth approximation.

The RBD method acts in a similar fashion. Given the data matrix X as in (1), it iteratively builds up Y (2) whose column
space approximates that of X . It starts with a randomly selected column of X (or a user input if existent). At each step
where we have k vectors {y1, . . . , yk}, the next vector yk+1 is found by scanning the columns of X and locating the one
whose error of projection into the current space span{y1, . . . , yk} is the largest. This process is continued until themaximum
projection/compression error is small enough or until the limit on the size of the reduced space is reached. An important
feature is an offline–online decomposition that allows the computation of the compression error, and thus the cost of
locating yk+1, to be independent of (the potentially large)m.

This paper is organized as follows. In Section 2, we review the backgroundmaterial, mainly the RBM. Section 3 describes
the reduced basis decomposition algorithm and discusses its properties. Numerical validations are presented in Section 4,
and finally some concluding remarks are offered in Section 5.

2. Background

The reduced basis method was developed for use with finite element methods to numerically solve PDEs. We assume,
for simplicity, that the problems (usually parametric PDE) to simulate are written in the weak form: find u(µ) in an Hilbert
space X such that a(u(µ), v; µ) = f (v; µ), ∀v ∈ X whereµ is an input parameter. These simulations need to be performed
for many values of µ chosen in a given parameter set D . In this problem a and f are bilinear and linear forms, respectively,
associated to the PDE (with aN and f N denoting their numerical counterparts). We assume that there is a numerical method
to solve this problem and the solution uN , called the ‘‘truth approximation’’ or ‘‘snapshot’’, is accurate enough for allµ ∈ D .

The fundamental observation utilized by RBM is that the parameter dependent solution uN (µ) is not simply an arbitrary
member of the infinite-dimensional space associated with the PDE. Instead, the solution manifold M = {uN (µ), µ ∈ D}

can typically be well approximated by a low-dimensional vector space. The idea is then to propose an approximation of M
by WN

= span{uN (µ1), . . . , uN (µN)} where, uN (µ1), . . . , uN (µN) are N (≪ N ) pre-computed truth approximations
corresponding to the parameters {µ1, . . . , µN} judiciously selected according to a sampling strategy [10]. For a given µ, we
now solve in WN for the reduced solution u(N)(µ). The online computation is N -independent, thanks to the assumption
that the (bi)linear forms are affine1and the fact that they can be approximated by affine (bi)linear forms when they are
nonaffine [11,12]. Hence, the online part is very efficient. In order to be able to ‘‘optimally’’ find the N parameters and to
assure the fidelity of the reduced basis solution u(N)(µ) to approximate the truth solution uN (µ), we need an a posteriori
error estimator ∆N(µ) which involves the residual r(v, µ) = f N (v; µ) − aN (uN(µ), v; µ) and stability information of the
bilinear form [13,14,2,3,15]. With this estimator, we can describe briefly the classical greedy algorithm used to find the
N parameters µ1, . . . , µN and the space WN . We first randomly select one parameter value and compute the associated
truth approximation. Next, we scan the entire (discrete) parameter space and for each parameter in this space compute its
RB approximation u(N=1) and the error estimator ∆1(µ). The next parameter value we select, µ2, is the one corresponding
to the largest error estimator. We then compute the truth approximation and thus have a new basis set consisting of two
elements. This process is repeated until the maximum of the error estimators is sufficiently small.

The reduced basis method typically has exponential convergence with respect to the number of pre-computed
solutions [16–18]. Thismeans that the number of pre-computed solutions can be small, thus the computational cost reduced
significantly, for the reduced basis solution to approximate the finite element solution reasonably well. The author and his
collaborators showed [19] that it works well even for a complicated geometric electromagnetic scattering problem that
efficiently reveals a very sensitive angle dependence (the object being stealthy with a particular configuration).

3. Reduced basis decomposition

In this section, we detail our proposed methodology by stating the algorithm, studying the error evaluation, and
pinpointing the computational cost.

1 a(w, v; µ) ≡
Qa

q=1 Θ
q
a (µ) aq(w, v), ∀ w, v ∈ XN , f (v; µ) ≡

Qf
q=1 Θ

q
f (µ) f q(v), ∀ v ∈ XN .
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