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Small-scale convection in the suboceanic mantle, if present, is commonly thought to manifest in surface heat
flux, and the steady-state scaling of sublithospheric convection has often been used to interpret heat flow
data from old ocean basins. Relations among small-scale convection, surface heat flux, and the steady-state
scaling, however, have been vague. A series of transient cooling modeling are conducted here to quantify
such relations. Given the strong temperature-dependency of mantle viscosity, results suggest that small-
scale convection could take place without noticeably disturbing surface heat flux, and that the use of steady-
state scaling may not be warranted for the present-day suboceanic mantle.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The ocean floor represents the surface of the top boundary layer
in mantle convection, and as the seafloor ages, the boundary layer
(or oceanic lithosphere) gradually thickens by thermal diffusion
(Turcotte and Schubert, 1982). The thickness of oceanic lithosphere
may not increase indefinitely, however, because it could become
dynamically unstable (Parsons and McKenzie, 1978; Davaille and
Jaupart, 1994; Korenaga and Jordan, 2003). The existence of small-
scale convection that prevents the growth of oceanic lithosphere has
long been speculated from various kinds of observations including
topography, heat flow, and seismic structure (e.g., Parsons and
McKenzie, 1978; Lister et al., 1990; Montagner, 2002; Ritzwoller
et al. 2004) and the focus of this article is on the relation between
small-scale convection and heat flow.

Because small-scale convection modifies the thermal structure of
lithosphere, its operation is expected to be reflected in surface heat
flux. Earlier numerical and laboratory studies indicate that surface
heat flux would divert considerably from that expected for simple
half-space cooling, as soon as convection occurs (Davies, 1988;
Davaille and Jaupart, 1994). A more recent analysis, however, suggests
that the influence of small-scale convection on surface heat flux may
be limited if the strong temperature-dependency of mantle viscosity
is considered (Korenaga and Jordan, 2002), and one of the purposes of
this paper is to quantify the effect of temperature-dependent viscosity
on the timing of surface manifestation.

Also, small-scale convection has commonly been thought to achieve
a quasi-steady-state shortly after its onset, and the scaling of stagnant-
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lid convection, which is valid for (statistically) steady state, has been
used to interpret the heat flow data of old (>100 Ma) ocean basins
(e.g., Davaille and Jaupart, 1994; Solomatov and Moresi, 2000). Even
when small-scale convection is taking place, however, it is not obvious
whether it should follow the steady-state scaling. A relation between
transient cooling and steady-state scaling was previously investigated
(Daly, 1980; Choblet and Sotin, 2000), but as explained later, it is yet
to be understood when small-scale convection could achieve a quasi-
steady-state in case of strongly temperature-dependent viscosity.

To address these timing issues, the transient cooling of a uniformly
hot fluid is investigated for a range of Rayleigh numbers and the
temperature-dependency of viscosity. A model setup will be ex-
plained next, followed by numerical results. The implications for the
dynamics of suboceanic mantle will be discussed briefly at the end.

2. Model formulation and results

Numerical formulation follows closely that of Korenaga and Jordan
(2003); a uniformly hot fluid with temperature-dependent viscosity
is subject to instantaneous cooling and no internal heating at t*=0
(asterisk indicates a nondimensionalized variable and time is
normalized by the diffusion time scale of D?/k, where D is the system
depth and « is thermal diffusivity). The nondimensionalized govern-
ing equations for thermal convection in an incompressible fluid are
solved by the 2-D finite element code of Korenaga and Jordan (2003).
The top and bottom boundaries are free slip. Temperature is
normalized by AT, which is the difference between the surface tem-
perature and the initial internal temperature. The top temperature is
fixed to 0, and the bottom boundary is insulating. A reflecting
boundary condition (i.e., free slip and insulating) is applied to the side
boundaries. Internal temperature is set to 1 at t* = 0. The aspect ratio
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of a model is four to eliminate wall effects, and the model is
discretized by 256 x 64 uniform quadrilateral elements. The ampli-
tude of random perturbation in the initial temperature field is 10~°,
and the following linear-exponential viscosity is employed:

WH(T*) = explo(1 — T#), (M

where 6 is the Frank-Kamenetskii parameter. Viscosity is normalized
by reference viscosity t, which corresponds to viscosity at T*=1.

The convection system is characterized by two nondimensional
parameters, the above Frank-Kamenetskii parameter and the Ray-
leigh number defined as

0= apogATD3
Ko

R 2)

where « is thermal expansivity and pg is reference density. All com-
binations of five Rayleigh numbers (107, 3x 107, 108, 3x 108, and 10°),
and five Frank-Kamenetskii parameters (9, 12, 15, 18, and 21) are
considered. An ‘effective’ activation energy for the temperature-
dependency of upper mantle viscosity is likely to be ~300 k] mol~!
regardless of creep mechanisms (Korenaga, 2006; Korenaga and Karato,
2008), which is equivalent to 0 of ~18.5 (assuming the temperature
scale of 1350 K). As far as the physics of small-scale convection is
concerned, it is immaterial whether linear-exponential or Arrhenius
viscosity is used. Both types of temperature-dependent viscosity result
in similar dynamics (Reese et al., 1999; Korenaga and Jordan, 2003).
My choice here is to facilitate direct comparison with the scaling law
of stagnant-lid convection (Solomatov and Moresi, 2000), which is
built on numerical simulation with linear-exponential viscosity.

Numerical modeling here is limited to 2-D, but it is sufficient to
capture relevant physics for the following reasons. First, whether 2-D
or 3-D does not matter for the onset of convection in a horizontally
infinite layer (Chandrasekhar, 1981). More critical is the restriction of
modes by wall effects (Davis, 1967; Korenaga and Jordan, 2001), which
should be minimized by the use of the large aspect ratio. Three-
dimensionality becomes important for finite-amplitude convection,
in particular regarding its spatial configuration. The planform of small-
scale convection beneath oceanic plate has long been thought to be
influenced by vertical shear associated with plate motion (e.g., Richter,
1973). To minimize the interference with such background flow, con-
vection cells tend to align in parallel to plate motion, and the dynamics
of small-scale convection becomes 2-D, being decoupled from vertical
shear (Jeffreys, 1928; Ingersoll, 1966; Richter and Parsons, 1975). The
temporal evolution of sublithospheric convection can thus be well
captured by 2-D models if such models are interpreted as the cross
section of suboceanic mantle perpendicular to plate motion (e.g., Buck
and Parmentier, 1986; Korenaga and Jordan, 2004). Finally, the scaling
law of stagnant-lid convection adopted here is also built on 2-D models
(Solomatov and Moresi, 2000). More important, the scaling of
stagnant-lid convection can be derived by the local stability analysis
of thermal boundary layer (Solomatov, 1995), indicating that 2-D
treatment is sufficient as for the onset of convection.

The onset time of convection, t¥, is defined as the time when the
kinetic energy of the system exceeds its initial value by more than
three orders of magnitude (Fig. 1a and b). After the onset, the surface
heat flux, g*, starts to deviate from what is expected for half-space
cooling (i.e., 1/ Vnt™), and the time when the deviation exceeds 5% of
the half-space prediction is marked as tZ. The internal temperature,
T#, is calculated by averaging the temperature field beneath the
thermal boundary layer (Fig. 1c). Steady-state heat flux, g%, is then
calculated from the following scaling law for stagnant-lid convection
(Solomatov and Moresi, 2000):
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Fig. 1. Example of numerical solutions in case of Ra of 3x 10% and 6 of 18. (a) Surface
heat flux as a function of diffusion time t*. Numerical solution (solid) is compared
with the half-space cooling prediction (dashed) and the stagnant-lid scaling (dotted).
(b) Kinetic energy. (c) Internal temperature.

where Ra; and 6; are redefined Rayleigh number and Frank-
Kamenetskii parameter, respectively, as Ra;=Ra exp[—60(1—T")]
and 6;=6T;*. The time when surface heat flux matches the steady-
state prediction is denoted as tF (Fig. 1a).

The use of the term ‘steady-state’ here may require some clari-
fication because it does not refer to time-independent convection.
When the Rayleigh number is sufficiently high, convection is usually
chaotic and highly time-dependent, but it is still possible to define a
statistically steady state at which time-averaged quantities converge.
The scaling law of Eq. (3) is based on such steady-state solutions. This
steady-state heat flux is a function of Ra; and 6;, both of which depend
on the internal temperature T;*. Because T{* slowly decreases in a
system cooled from above (Fig. 1c), heat flow predicted by the steady-
state scaling also changes with time (Fig. 1a). Thus, it should be
understood as the amount of heat flow expected when small-scale
convection is in a statistically steady state with given Ra; and 6;.

As Fig. 2a shows, the ratio tZ/t¥ increases almost linearly as 0
increases, and for 0~20, it takes three times longer to have a noticeable
heat flow anomaly than just to have the onset of convection. This
tendency of delayed surface manifestation may already be recognized
in Fig. 2 of Korenaga and Jordan (2002), but Fig. 2a here demonstrates
that there is a simple linear relation independent of the Rayleigh
number. The scaling law for the onset of convection (Korenaga and
Jordan, 2003) suggests that the onset times for different model runs
should collapse onto a single curve if they are normalized by the local
boundary layer time scale t* of Ra—2/3, which is indeed the case
(Fig. 2b). Similar data collapse is also achieved for the equilibration
time tF, but data are more scattered for greater 6 because the steady-
state prediction and the measured heat flux tend to cross at smaller
angles. As for t, t¥/t* increases for larger 6. This behavior may be
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