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a  b  s  t  r  a  c  t

Electrical propagation of the cardiac impulse in the myocardium can be described by the

eikonal-diffusion equation. This equation governs the field of activation times in a domain

where conduction properties are specified. This approach has been applied to knowledge-

based interpolation of sparse measurements of activation times and to the creation of initial

conditions for detailed ionic models of cardiac propagation. This paper presents the math-

ematical basis, matrix formulation, and compact Matlab implementation of an iterative

finite-element solver (triangular meshes) for the eikonal-diffusion equation extended to

reentrant activations, which automatically identifies the period of reentry and computes

the resulting isochrones. An iterative algorithm is designed to perform Laplacian interpo-

lation of reentrant activation maps to be used as initial estimate for the eikonal-diffusion

solver. The performance of the algorithm is analyzed in test-case geometries (ventricular

slice  and simplified atrial surface model).

© 2011 Elsevier Ireland Ltd. All rights reserved.

1.  Introduction

Atrial arrhythmias are rhythm disorders frequently encoun-
tered in clinical practice. Current therapies include pharmaco-
logical control of the ventricular rate, electrical cardioversion
(defibrillation) and catheter ablation (creation of lesions in the
atrial tissue using radio frequency or cryo catheter electrodes).
Catheter ablation involves exploration of atrial endocardium
with intracardiac electrodes recording electrical signal (elec-
troanatomical mapping). Local activation time can usually be
extracted from these intracardiac electric signals. In combina-
tion with cardiac imaging data, this procedure can provide a
description of the dynamics of the arrhythmia through acti-
vation maps. Spatial resolution is, however, often limited.
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To investigate the basic mechanisms of atrial arrhythmias
and guide the development of diagnostic and therapeu-
tic tools, computer models of atrial electrophysiology have
been developed [1–6]. In these models, propagation of the
electrical impulse in the myocardium is governed by a
reaction-diffusion equation [7].  To improve the clinical rele-
vance of model results, patient-specific information needs to
be incorporated. This information can be local (cell electro-
physiology, cell-to-cell coupling) or global (dynamics of the
arrhythmia, pathways of reentry). Local, microscale data are
natural parameters in the bottom-up approach typically used
in cardiac modeling. Global, macroscale data such as acti-
vation maps are often easier to obtain but more  difficult to
integrate in the model.
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Lines et al. proposed to add a non-local forcing term to the
reaction-diffusion equation to synchronize a reentrant activ-
ity with experimental or synthetic signals recorded at sparse
locations during atrial flutter [8].  More  recently, we developed
a method for creating an initial condition for the reaction-
diffusion system from a reentrant pathway [9].  This method
was based on the eikonal-diffusion equation [10–12],  a partial
differential equation for the activation time. Activation maps
computed using this approach showed good correspondence
with those simulated using the reaction-diffusion system, at a
much lower computational cost. In addition, the initial condi-
tion created from an activation map  enabled the simulation of
reentries along prescribed anatomical or functional reentrant
pathways in the reaction-diffusion model [9].

In this paper, an efficient iterative solver for the eikonal-
diffusion equation applied to reentrant activity is described.
Numerical methods from [9] are reformulated to facilitate and
optimize Matlab implementation. An alternative, more  robust
algorithm for the interpolation of activation times (used as
initial estimate for the iterative solver) is proposed. Compact
Matlab code is provided and explained. A theoretical analysis
of the algorithm is presented that enables automatic compu-
tation of the period of the reentry, thus reducing the number
of required input parameters. Performance and accuracy is
assessed using test case problems.

2. Background

2.1.  Problem  statement

Activation time is the time ta(x) at which an electrical impulse
(cardiac wave  front) passes through the point x. The field ta(x)
forms an activation map.  Stable reentry consists in single or
multiple self-sustained activation waves  propagating period-
ically in the cardiac tissue. To emphasize the periodic nature
of a reentrant activity and exhibit its topological features, the
scaled activation time � is defined as

�(x) = 2� ta(x)/T mod  2�, (1)

where T is the period of the reentry. For the moment, T is
assumed to be known. Later, methods will be presented to
derive its value from conduction properties (Sections 2.3 and
4.5).

Two problems will be considered in this paper:

1. Interpolation: From a set of known scaled activation times
�(xi), xi ∈ �, interpolate an activation map  �(x) while taking
into account its periodic nature. The set � can be a dis-
crete set of points (interpolation from a finite number of
measurements, for example catheter electrodes) or closed
curves describing observed pathways of reentry.

2. Simulation:  Reconstruct activation maps using a priori
knowledge about wave  front propagation (local curvature-
dependent conduction velocity). Adjust activation maps
obtained from problem 1 to satisfy hypothesized conduc-
tion properties of the tissue substrate.

Both problems will be solved using a partial differential
equation based on the eikonal-diffusion equation for the field
�.

2.2.  The  eikonal-diffusion  equation  for  a  reentry

Derived from the monodomain propagation equations [7]
using singular perturbation techniques [12], the eikonal-
diffusion equation in the domain � (with boundary ∂�)
governs the shape of activation wave  fronts [10,9,11,12]:

‖c∇�‖ = 1 + ∇ · (D∇�) x ∈ �, (2)

n · D∇� = 0 x ∈ ∂�. (3)

where the tensors c (scaled propagation velocity in cm/rad,
which means conduction velocity in cm/s ×T/2�) and D (scaled
diffusion tensor in cm2) are symmetric positive definite, || · ||
is the euclidean norm and n is a unit vector normal to the
boundary ∂�.  In the isotropic case with D → 0, it reduces to the
eikonal equation c ||∇�|| = 1 stating that the propagation veloc-
ity of the wave fronts is constant [13]. Diffusion of activation
times introduces wave  front curvature-dependent propaga-
tion velocity [10]. In the purely diffusive limit D = �D̂ with
�→ + ∞,  the equation becomes the diffusion equation

∇ · (D̂∇�) = 0 x ∈ � \ �, (4)

n · D̂∇� = 0 x ∈ ∂� \ �, (5)

�(x) = �0(x) x ∈ �. (6)

The Dirichlet boundary condition on � (6) was added to for-
mulate a Laplacian interpolation problem [14]. Interpolation
of activation times is therefore a limit case of the eikonal-
diffusion problem.

Note, however, that � may contain 2� jumps anywhere,
which makes it more  difficult in this formulation to numer-
ically compute the gradient [15]. To handle this phase
unwrapping problem, a phase function transform � = exp (i�)
is applied. The transformed eikonal-diffusion equation reads
[9]:

‖c∇�‖ = 1 + Im ∇ · (�∗D∇�) x ∈ �, (7)

|�| = 1 x ∈ �, (8)

n · D∇� = 0 x ∈ ∂�, (9)

where the symbol ‘Im’ denotes the imaginary part and the
star (∗) means the conjugate (when applicable) transposed
vector/tensor.

2.3.  Parameter  identification

The parameters c and D will be selected to reproduce activa-
tion patterns that would be observed in a monodomain model
with conductivity tensor � (mS/cm), membrane surface-
to-volume ratio  ̌ (cm−1), and membrane capacitance per
unit membrane area Cm (�F/cm2). The derivation of the
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