ELSEVIER Contents lists available at ScienceDirect # Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl # Production rate of cosmogenic ²¹Ne in quartz estimated from ¹⁰Be, ²⁶Al, and ²¹Ne concentrations in slowly eroding Antarctic bedrock surfaces Greg Balco *, David L. Shuster Berkeley Geochronology Center, 2455 Ridge Road, Berkeley CA 94709 USA #### ARTICLE INFO Article history: Received 8 October 2008 Received in revised form 30 January 2009 Accepted 6 February 2009 Available online 4 March 2009 Editor: T.M. Harrison Keywords: Cosmogenic nuclide geochronology beryllium-10 aluminum-26 neon-21 Antarctica production rate calibration #### ABSTRACT We estimated the production rate of 21 Ne in quartz using a set of samples from slowly eroding sandstone surfaces in the Antarctic Dry Valleys. Geologic evidence as well as cosmogenic 10 Be and 26 Al concentrations indicate that i) these sites have experienced millions of years of surface exposure at low erosion rates, and ii) steady erosion has been sustained long enough that surface 10 Be and 26 Al concentrations have reached equilibrium with the erosion rate. Under these conditions, surface cosmogenic 21 Ne concentrations should be a function only of the erosion rate and the 21 Ne production rate. As the erosion rate can be determined from 10 Be and 26 Al concentrations, this allows an estimate of the 21 Ne production rate. Estimating the reference 21 Ne production rate on this basis, with the assumption that all 21 Ne production is by neutron spallation, yields a poor fit to measured 21 Ne concentrations and a systematic residual that is correlated with the erosion rate of the sample site. The same steady-erosion assumption with a production model that includes production by deeply penetrating muons yields a good fit both to our measurements and to similar, independent, measurements from an Antarctic bedrock core. Both data sets together yield a total reference 21 Ne production rate of 18.3 ± 0.4 atoms g^{-1} a $^{-1}$, of which 0.66 ± 0.10 atoms g^{-1} a $^{-1}$ is due to muon interactions. © 2009 Elsevier B.V. All rights reserved. #### 1. Introduction ²¹Ne is a rare stable isotope of neon produced in surface rocks by cosmic-ray bombardment. Like a variety of other stable (³He) and radioactive (¹⁰Be, ²⁶Al, ³⁶Cl, and ¹⁴C) cosmogenic nuclides, ²¹Ne is commonly used to determine surface exposure ages, erosion rates, and rates of sediment production and transport. ²¹Ne has important additional applications because, like ¹⁰Be and ²⁶Al, it is produced in quartz. These nuclides share the same target and production mechanisms, but have different half-lives (²¹Ne is stable; the ²⁶Al and ¹⁰Be half-lives are 1.36 and 0.7 Ma, respectively). Thus, they can be used to: i) quantify exposure histories that are more complicated than a single period of exposure (Klein et al., 1988; Lal, 1991), and ii) date quartz-bearing sediments by 'burial dating' (Granger, 2006). All these applications depend on accurate measurements of the absolute surface production rates of these nuclides or their production ratios. The production rates of geologically useful cosmogenic nuclides are only a few to a few hundred atoms $g^{-1} a^{-1}$, so direct measurement of production rates in artificial targets exposed for months or years requires measurement at very low concentrations and is relatively imprecise. Most production rate measurements are geological calibrations, where one infers the production rate from nuclide concentrations in a rock surface whose exposure age is independently known from geologic evidence. Any such site must be old enough to have accumulated measurable nuclide concentrations, but young enough to not have been significantly degraded by weathering and erosion. Currently accepted 10 Be and 26 Al production rates are based on seven such sites (Balco et al., 2008, and references therein). An alternative strategy for short-lived radionuclides is to select sites that have sufficiently low erosion rates and old exposure ages that nuclide concentrations have reached equilibrium between production and decay. In this case, the nuclide concentration N (atoms g^{-1}) is related to the production rate P (atoms $g^{-1}a^{-1}$) by $N=P/\lambda$, where λ is the decay constant (a^{-1}) of the nuclide; this approach has been used to measure production rates of cosmogenic 14 C and 36 Cl (Evans et al., 1997; Lifton et al., 2008). Neither of these approaches is well-suited to measuring the production rate of cosmogenic ²¹Ne. ²¹Ne is stable, so equilibrium between production and decay does not occur. More importantly, precise measurement of cosmogenic ²¹Ne in relatively young surfaces is more difficult than for other commonly measured cosmogenic nuclides. Although measuring the total amount of ²¹Ne in a geologic sample is straightforward, this nearly always includes both cosmogenic ²¹Ne and trapped or nucleogenic ²¹Ne (Niedermann, 2002). Accurately measuring cosmogenic ²¹Ne requires measurement of other Ne isotopes and unmixing of multiple Ne components. For the short exposure times characteristic of calibration sites with minimal erosion and precise independent ages, cosmogenic ²¹Ne is typically less abundant than ²¹Ne from other sources. Resolving these components contributes a large uncertainty to the cosmogenic ²¹Ne measurement. ^{*} Corresponding author. Tel.: +1 510 644 9200; fax: +1 510 644 9201. E-mail address: balcs@bgc.org (G. Balco). Thus, the sites that are best suited for production rate calibration are by nature those where precise cosmogenic ²¹Ne measurements are most difficult. There exists only one published geological calibration of the ²¹Ne production rate in quartz (Niedermann et al., 1994; Niedermann, 2000), based on two samples from a site in the California Sierra Nevada exposed by deglaciation 13 ka. This study was a striking analytical accomplishment in that the authors made relatively precise measurements at low cosmogenic ²¹Ne concentrations in the presence of multiple interfering Ne components. They determined the 21 Ne/ 26 Al production ratio to be 0.65 \pm 0.11. Given the 26 Al production rate (30.3 atoms $g^{-1} a^{-1}$) inferred from the commonly used production rate scaling scheme of Stone (2000) (as implemented in Balco et al. (2008)) and the ¹⁰Be-²⁶Al production rate calibration data set in Balco et al. (2008), this implies a reference ²¹Ne production rate of 19.6 ± 3.3 atoms g^{-1} a^{-1} (following common practice, by 'reference production rate' we mean the production rate at 1013.25 mbar and high latitude). This value is consistent with model calculations (18.4 and 21.3 atoms g^{-1} a^{-1} from Masarik and Reedy (1996) and Schäfer et al. (1999) respectively), and ²¹Ne exposure ages calculated using this value generally agree with ¹⁰Be and ²⁶Al exposure ages on the same surfaces (Hetzel et al., 2002; Schäfer et al., 2008; Kober et al., 2008). However, this production rate estimate is less precise than those for other commonly used cosmogenic nuclides. In addition, the lack of estimates from multiple sites makes it impossible to evaluate scaling relationships between ²¹Ne and other cosmogenic nuclides that might yield insight into production mechanisms. Here we suggest a new strategy for determining the production rate of cosmogenic ²¹Ne in quartz that does not rely on sites with short exposure times. Instead we select sites where the surface ²¹Ne concentration has reached steady state such that ²¹Ne production is balanced not by radioactive decay, but by loss of quartz at the surface and advection of lower-²¹Ne quartz from below due to steady erosion. If erosion at an approximately constant rate is sustained for long enough that a thickness of rock equal to several attenuation lengths for subsurface production is removed, surface concentrations of ²⁶Al, ¹⁰Be, and ²¹Ne will reach production-erosion equilibrium. As ¹⁰Be and ²⁶Al production rates are independently known, this should permit determination of the erosion rate from the ¹⁰Be and ²⁶Al concentrations, and in turn determination of the ²¹Ne production rate from this erosion rate and the ²¹Ne concentration. This approach has the advantage that sites with low erosion rates have high cosmogenic ²¹Ne concentrations. This limits the importance of interfering Ne components and improves measurement precision. We chose a set of sandstone bedrock sites in the Antarctic Dry Valleys where: i) geomorphic and stratigraphic evidence indicates that surfaces have remained continuously exposed for ~ 14 Ma; ii) geomorphic evidence as well as cosmogenic 10 Be and 26 Al concentrations indicate that erosion rates are extremely slow (<2 m/Ma); and iii) paired 10 Be and 26 Al measurements indicate that erosion rates have been steady for a long enough time that 10 Be and 26 Al concentrations have reached steady state. Surface 21 Ne concentrations at these sites are orders of magnitude higher than at the Sierra Nevada sites of Niedermann et al. (1994). #### 2. Methods ### 2.1. ¹⁰Be and ²⁶Al measurements We carried out quartz separation and Be and Al extraction at the University of Washington Cosmogenic Nuclide Laboratory. We purified quartz by crushing and sieving at 0.25–0.5 mm and repeated etching in dilute HF, then extracted Be and Al by HF dissolution and column chromatography (Stone, 2004). Our Be carrier was a commercially available ICP standard solution. We determined total Al concentrations by subsampling the dissolved quartz–HF solution, evaporating HF in the presence of $\rm H_2SO_4$ to expel fluoride, and redissolving in dilute HNO3 for Al measurement by ICP-OES. Al concentrations in quartz were 80–120 ppm with uncertainties of 0.5–2%. We measured Be and Al isotope ratios at PRIME Lab, Purdue University. Combined process and carrier blanks were $2.8\pm0.8\times10^5$ atoms $^{10}\rm Be$ and $2.3\pm0.9\times10^5$ atoms $^{26}\rm Al$, always <0.2% of the total number of $^{10}\rm Be$ atoms and <0.05% of the total number of $^{26}\rm Al$ atoms in any sample. Be isotope ratios were referenced at the time of measurement to the isotope ratio standards described in Nishiizumi (2002). Recently, Nishiizumi et al. (2007) revised the nominal isotope ratios of those standards. We renormalized our measurements to reflect this revision, and adopt the associated ^{10}Be decay constant $(5.10\pm0.26\times10^{-7}~\text{a}^{-1})$. ^{26}Al measurements are referenced to the isotope ratio standards of Nishiizumi (2004), and we use the corresponding ^{26}Al decay constant $(9.83\pm0.25\times10^{-7}~\text{a}^{-1})$. Table 1 shows ^{26}Al and ^{10}Be concentrations. #### 2.2. 21 Ne measurements We measured cosmogenic ²¹Ne in aliquots of the same quartz separates that were used for ²⁶Al and ¹⁰Be measurements. We analyzed at least two aliquots of each sample (Table 1, Table S1). These samples were heated at 70 °C for several days during quartz purification; measured diffusion kinetics for ²¹Ne in quartz (Shuster and Farley, 2005) indicate that this should not cause detectable Ne loss. **Table 1**Site and sample information and cosmogenic-nuclide concentrations. | Sample name ^a | Latitude
(DD) | E Longitude
(DD) | Elevation ^b (m) | Sample thickness (cm) | Topographic shielding | [¹⁰ Be] ^c
(10 ⁶ atoms g ⁻¹) | [²⁶ Al] ^d
(10 ⁶ atoms g ⁻¹) | [²¹ Ne] ^e
(10 ⁶ atoms g ⁻¹) | No. of ²¹ Ne
measurements | $(\chi^2/\nu)^{\rm f}$ | |--------------------------|------------------|---------------------|----------------------------|-----------------------|-----------------------|--|--|--|---|------------------------| | 05-EG-118-BR | - 77.6419 | 160.9399 | 1721 | 7 | 0.9823 | 20.56 ± 0.20 | 101.7 ± 3.3 | 133.8 ± 3.2 | 2 | 0.3 | | 05-EG-119-BR | -77.6442 | 160.9446 | 1671 | 7 | 0.9978 | 12.69 ± 0.20 | 66.4 ± 1.8 | 78.3 ± 2.4 | 3 | 1.4 | | 04-AV-001-BR | -77.8569 | 160.9303 | 1289 | 1.5 | 0.9856 | 5.75 ± 0.21 | 34.4 ± 1.3 | 38.1 ± 1.9 | 3 | 0.9 | | 04-AV-005-BR | -77.8806 | 160.8222 | 1455 | 5 | 0.9861 | 20.75 ± 0.57 | 95.2 ± 2.4 | 176.1 ± 3.5 | 4 | 0.6 | | 04-AV-006-BR | -77.8866 | 160.7736 | 1681 | 3 | 0.9828 | 16.21 ± 0.34 | 80.5 ± 2.1 | 93.6 ± 6.3 | 3 | 2.2 ^g | | 04-AV-010-BR | -77.8882 | 160.8060 | 1628 | 2.5 | 0.9971 | 15.4 ± 0.61 | 82.3 ± 2.2 | 95.0 ± 1.7 | 4 | 0.8 | | 04-AV-018-BR | -77.8791 | 160.9183 | 1690 | 4 | 0.9987 | 25.04 ± 0.40 | 118.1 ± 3.6 | 168.4 ± 2.8 | 3 | 0.6 | | 05-WO-137-BR | -77.5055 | 161.0031 | 1463 | 1 | 0.9983 | 29.51 ± 0.86 | 123.7 ± 4.0 | 364 ± 18 | 3 | 3.0 ^g | | 05-WO-140-BR | -77.5055 | 161.0031 | 1463 | 1.5 | 0.9983 | 28.00 ± 0.69 | 123.3 ± 4.5 | 299.2 ± 4.9 | 3 | 0.9 | Complete results of the step-degassing Ne analyses appear in Table S1. - ^a First two letters of sample names reflect field areas: EG, East Groin (western Asgard Range); AV, Arena Valley; WO, western Olympus Range. - $^{ m b}$ Measured by barometric traverse from benchmarks surveyed with high-precision GPS. Uncertainty in elevation is ± 3 m. - ^c Normalized to the isotope ratio standards of Nishiizumi et al. (2007). - d Normalized to the isotope ratio standards of Nishiizumi (2004). - e Error-weighted mean of multiple measurements on distinct quartz aliquots (see Table S1). - f Reduced χ^2 of multiple measurements with respect to the error-weighted mean. - The stated uncertainty in ²¹Ne concentrations in these samples is the standard deviation of the measurements rather than the error of the weighted mean. ## Download English Version: # https://daneshyari.com/en/article/4679226 Download Persian Version: https://daneshyari.com/article/4679226 Daneshyari.com