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Parman has recently suggested that a correlation exists between peaks in the ocean island basalt (OIB)
“He/*He distribution and peaks in crustal zircon ages. This correlation is based on matching peaks seen
in smooth kernel density estimates. Kernel density estimation is a very useful technique, but care is
required when choosing the smoothing bandwidth as spurious peaks can be produced if the bandwidth
is too small. Here I provide an introduction to a general statistical technique for determining whether
peaks in density estimates are significant, know as SiZer, focusing on its application to the “He/*He data.
SiZer identifies only two statistically significant peaks in the OIB “He/He distribution, compared with
the eight peaks identified by Parman. The helium-continental crust correlation does not seem to be
supported by the current data.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Parman (2007) has recently shown a correlation between peaks in
ocean island basalt (OIB) “He/He distributions and peaks in the age
distributions of crustal zircons (Condie, 1998; Kemp et al,, 2006). Such a
correlation has intriguing geochemical consequences (Porcelli, 2007) — in
particular, it links a record of mantle depletion (*He/?He) with a record of
crustal production (zircons), and thus provides a key constraint on the
chemical evolution of the Earth. It suggests that the continents have grown
through distinct episodes of mantle melting over the Earth's history.

Parman's correlation raises some important statistical questions: How
do we identify peaks in distributions? How do we know if a peak we
observe in a histogram or a density estimate is really there? Can we
distinguish between real peaks and the spurious peaks that can arise as
artifacts of the sampling process? In fact, statistical methods for answering
these questions have been developed, and the aim of this paper is to
provide an accessible introduction to some of them. In particular, [ review
kernel density estimation (Silverman, 1986), a recently developed method
for identifying significant peaks known as SiZer (Chaudhuri and Marron,
1999), and Gaussian mixture modelling (McLachlan and Peel, 2000). I also
examine the problems and pitfalls of attaching significance to spurious
peaks. While the techniques described apply generally to any data that can
plotted in a histogram, I focus here on the helium isotopic data. For a more
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rigorous and detailed exposition of these ideas, the reader is referred to
the statistics literature. Formal mathematical definitions of the techniques
can be found in the appendices.

2. Kernel density estimation

The main focus of Parman's analysis are the probability density
functions (PDFs) of “He/>He for different groups of basalts, shown in
figs. 1 and 2 of Parman (2007). These PDFs were generated by a
statistical technique known as kernel density estimation (Silverman,
1986), which can be thought of as refinement over histograms. Kernel
density estimates have two main advantages over histograms: they
are smooth, and they do not require the choice of end points of bins.
However, there is still one key parameter in kernel density estimation
that must be chosen by the user, known as the bandwidth, which is
analogous to the choice of bin size in a histogram. One must also
choose the shape of the kernel function (typically a Gaussian, as
assumed here), but this choice is generally less important than the
bandwidth. To form the kernel density estimate, each data point in the
sample is represented by a Gaussian centred on the data point, with
standard deviation given by the bandwidth. The smooth density
estimate curve is simply the sum of these individual Gaussians.
Different curves result from different choices of bandwidth.

Fig. 1 illustrates the problem of bandwidth selection. 1340 random
samples (the same number of samples as Parman's OIB data set) were
drawn from a specified bimodal distribution with PDF shown by the
dashed curves. The goal is to estimate this true underlying PDF from the
random samples. If the chosen bandwidth is too large, only a single peak is
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Fig. 1. Kernel density estimates (solid lines) of 1340 random samples drawn from a
distribution with true density shown by the dashed line. Five different choices of
bandwidth are shown. a) is certainly over smoothed, as the estimate has only a single
peak. c¢) shows a bandwidth choice that is considered optimal by the method of
Sheather and Jones (1991). e) is certainly under smoothed, as the estimate shows
numerous spurious peaks that are not features of the true distribution.

found, and the estimate is said to be oversmoothed: we have missed
important features of the underlying distribution by this choice. On the
other hand, if the chosen bandwidth is too small, we undersmooth: the
density estimate has far too many peaks, and the many peaks that are
observed do not reflect any feature of the true underlying distribution, but
are instead a spurious artifact of the sampling. The same effect can be seen
in histograms by varying the bin size.

The important question is then, how to choose the bandwidth? In
fact, there are a number of techniques that automatically choose a good
bandwidth (Jones et al., 1996), and all software packages that implement
kernel density estimation come with a default method. These automatic
choices of bandwidth typically try to minimise the mean integrated
squared error between the density estimate and the unknown true
density, based on various assumptions and approximations. For
example, the estimate shown in Fig. 1c is close to the bandwidth that
is automatically selected by the method of Sheather and Jones (1991)
(BW=0.31), which matches the true density rather well. Silverman's rule
of thumb (Silverman, 1986) for a good bandwidth gives a similar
estimate (BW=0.38). Silverman's rule of thumb only works well for
near-Gaussian densities, whereas the Sheather and Jones method is
more flexible and gives good results for a wider range of densities (see
Appendix A and Jones et al. (1996)). While there is still some debate over

the best way to automatically choose a good bandwidth, an automatic
choice is generally preferable to a manual choice.

Kernel density estimates for Parman's OIB dataset are shown in
Fig. 2. In Parman's plots the bandwidth was manually chosen to be
around 1500 (compare Fig. 2d of this paper to figs. 1 and 2 of Parman
(2007)). A bandwidth chosen by the method of Sheather and Jones
(1991) is around 3000 (Fig. 2c), and by Silverman's rule of thumb
around 5000, which suggests Parman's density estimates may be
undersmoothed and suffer from spurious peaks. There can be good
reasons for manually choosing a smaller bandwidth: for example, if
one is interested in small scale features of the density function, or if
the density is thought to have well separated peaks. However, there is
always the danger that many of the peaks found with a small
bandwidth are artifacts of the sampling and do not reflect the true
distribution. Even with an automatic choice of bandwidth, a few peaks
may be seen that do not reflect the true distribution.

3. Feature significance
Since Parman's analysis is based on attaching physical significance

to peaks in the density estimates, it is crucial to determine which
peaks are statistically significant. Which peaks are really there? This is

a) BW=12000

b) BW=6000

¢) BW=3000

Probability density

d) BW=1500

;

) BW=750

;

T T T
60000 80000 100000 120000

*He/°He

T T
0 20000 40000

Fig. 2. Kernel density estimates of “He/>He OIB data for five different choices of
bandwidth. There are 1340 observations in the dataset. a) BW=120,000 is certainly over
smoothed. c) BW=3000 is the bandwidth that would be automatically chosen by the
method of Sheather and Jones (1991). d) BW=1500 is closest to Parman's choice of
bandwidth (see Figs. 1 and 2 of Parman, 2007). e) BW=750 is certainly under smoothed.
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