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a b s t r a c t

The present work is devoted to an approximation of the statistical moments of the solution
of a class of elliptic transmission problems in R3 with uncertainly located transmission
interfaces. In this model, the diffusion coefficient has a jump discontinuity across the
random transmission interface which models linear diffusion in two different media
separated by an uncertain surface. We apply the shape calculus approach to approximate
the solution perturbation by the so-called shape derivative. Correspondingly, statistical
moments of the solution are approximated by the moments of the shape derivative. We
characterize the shape derivative as a solution of a related homogeneous transmission
problemwith nonzero jump conditions, which is solved by the boundary integral equation
method. A rigorous theoretical framework is developed, and the theoretical findings are
supported by and illustrated in two particular examples.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Elliptic transmission or interface problems arise in many fields in science and engineering, such as tomography,
deformation of an elastic body with inclusions, stationary groundwater flow in heterogeneous medium, fluid–structure
interaction, scattering of an elastic body and many others. Combined with the state-of-the-art hardware, advanced
numerical schemes are capable of producing a highly accurate and efficient deterministic numerical simulation, provided
that the problem data are known exactly.

However, in real applications, a complete knowledge of the problem parameters is not realistic for many reasons. First,
the simulation parameters are often estimated frommeasurementswhich can be inexact , e.g. due to imperfectmeasurement
devices. Second, the parameters are estimated based on a large but finite number of system samples (snapshots); this
information can be incomplete or stochastic. Finally, parameters of the system originate from a mathematical model which
is itself only an approximation of the actual process. Under such circumstances, highly accurate results of a single deterministic
simulation for one particular set of problem parameters are of limited use. An important paradigm, becoming rapidly popular
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over the past years, see e.g. [1–11] and the references therein, is to treat the lack of knowledge via modelling uncertain
parameters as random fields.

If the forward solution operator is continuous, the solution of the forward problem with random parameters becomes
a well-defined random field (since a composition of a continuous and a measurable function is measurable). Efficient
numerical approximation of the random (or stochastic) solution and its probabilistic characteristics, e.g. statisticalmoments,
is a highly non-trivial task representing numerous new interdisciplinary challenges: from regularity analysis and numerical
analysis to modelling and efficient parallel large scale computing.

As already mentioned in the beginning, the case of uncertain but sufficiently regular interfaces appears in numerous
applications, i.e. in microbiology and medicine. Interior domains may represent the interior of biological cells (or, say, a
volume occupied by a human organ, tumour, etc.) and exterior domains the outer medium (the surrounding part of the
human body). Cells of the same type (as well as human organs) have a similar shape which, however, is somewhat different
between two particular species, so that the family of all possible shapes can be viewed as a perturbation of a nominal one.
The interface between the interior and the exterior domain can be reasonably understood as the location of the jump of the
material parameters, e.g. as the jump of the diffusivity.

In this article we develop a deterministic method for numerical solution for a class of transmission problems with
randomly perturbed interfaces. The equation to be solved is of the form

−∇ · (α∇u) = f in D±,

where D− is a random bounded domain in R3 and D+ = R3
\D− is its complement. The domains share a common random

surface Γ , and the coefficient function α takes distinct constant values in D− and D+, respectively. The solution u is subject
to jump conditions across Γ . A precise description of the model problem is deferred until Section 2.3, where a probabilistic
perturbation model for the surface Γ (and thus D±) will be rigorously introduced. Within this model, the transmission
interface depends on the ‘‘random event’’ ω and the parameter ϵ ≥ 0 controlling the amplitude of the perturbation.
Therefore, the solution u depends on ω and ϵ, and will be denoted by uϵ(ω). The case ϵ = 0 corresponds to the zero
perturbation. In the present paper we aim at estimating probabilistic properties of the solution perturbation uϵ(ω) − u0

when the perturbation parameter is small, namely ϵ ≪ 1.
More precisely, we exploit the ideas from the recent publications [3,9,12–14] and propose to approximate the statistical

moments of the solution perturbation by the moments of the linearized solution, i.e. for a fixed (small) value of the
perturbation parameter ϵ, the kth order statistical moments of the solution perturbation are approximated by

Mk
[uϵ

− u0
] ≈ ϵkMk

[u′
] (1.1)

and similarly

Mk
[uϵ

− E[uϵ
]] ≈ ϵkMk

[u′
]. (1.2)

Here u′ is the shape derivative of uϵ formally understood as the linear order term in the asymptotic expansion

uϵ(x, ω) = u0(x) + ϵu′(x, ω) + · · · , ϵ → 0, (1.3)

for almost all random events ω ∈ Ω at a certain fixed point x in the Euclidean space R3. The notion of the shape derivative
has been introduced in the context of the shape optimization (see e.g. the monograph [15] and the references therein) and
allows to quantify sensitivity of the solution of a PDE to small perturbations of the boundary. It is worth mentioning that
similar concepts have been developed (in the deterministic framework) and termed domain derivatives within the inverse
problem community, see e.g. [16,17] for treatment of related elliptic and parabolic transmission problems in the case of the
bounded outer subdomain D+.

Although very intuitive, (1.3) cannot be used as a rigorous definition of u′(x, ω). In particular, the existence of the shape
derivative and the convergence of the asymptotic expansion (1.3) are unclear without further assumptions. In the first part
of this article (Section 3) we develop a rigorous mathematical theory of existence of the shape derivative for the class of
elliptic transmission problems under consideration. Similarly to [14, Lemma 1], we obtain a characterization of the shape
derivative u′(x, ω) as a solution of a deterministic transmission problem on a fixed interface. Our contribution in this section
is two-fold: (i) we extend the notion of shape derivatives for interface problems developed in [14] to the case of unbounded
domains andhigher ordermoments, and (ii)we fill the gaps in the existing literaturewhere only a limited rigorous discussion
on existence of shape derivatives is presented. We point out the rigorous results in the deterministic setting in [16,17] and
also in [18,19] where a similar concept of the Fréchet domain derivative has been presented and rigorously analysed. This
derivative in fact coincides with the notion of the material derivative rather than the shape derivative in the terminology
of [15] and Definition 3.5 below. We also refer to the related work [20] and references therein.

As mentioned above, for almost all ω ∈ Ω the shape derivative u′(·, ω) is a solution of a deterministic problem in
R3 with (in general) nonhomogeneous jump conditions but with vanishing volume source term. The second contribution
of this article is the derivation and analysis of boundary integral equation methods [21–23] which are used to solve this
transmission problem on deterministic domains with deterministic interfaces. A tensorization argument is then used to
obtain the approximation (1.1) for the statistical moments.
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