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a b s t r a c t

Computer-aided design-based NURBS surfaces form the basis of isogeometric shell anal-
ysis which exploits the smoothness and higher continuity properties of NURBS to derive
a suitable analysis model in an isoparametric sense. Equipped with higher order approxi-
mation capabilities the used NURBS functions focus increasingly on rotation-free shell ele-
ments which are considered to be difficult in the traditional finite element framework. The
rotation-free formulation of shell elements is elegant and efficient but demands special
care to enforce reliably essential translational and rotational boundary conditions which
is even more challenging in the case of trimmed boundaries as common in CAD models.
We propose a Nitsche-based extension of the Kirchhoff–Love theory to enforce weakly es-
sential boundary conditions of the shell. We apply our method to trimmed and untrimmed
NURBS structures and illustrate a good performance of the method with benchmark test
models and a shell model from engineering practice. With an extension of the formulation
to aweak enforcement of coupling constraints we are able to handle CAD-derived trimmed
multi-patch NURBS models for thin shell structures.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The conceptual ideas behind isogeometric analysis (IGA) aim at unifying computer aided design (CAD) and finite element
analysis (FEA) [1,2]. Isogeometric analysis employs the non-uniform rational B-spline functions (NURBS) [3] used for the
geometric description of the structure to approximate its physical response in an isoparametric sense. In comparison with
the finite element method isogeometric analysis behaves superior in many fields which can be mainly attributed to the
exact geometry representation, the combination of higher continuity and higher order approximation properties and the
method’s unique refinement capabilities. The superiority of the method has been demonstrated by a number of researchers
and meanwhile covers all fields of numerical analysis and simulation, see e.g. [4–17].

Shell structures excel by an optimal load-carrying behavior and are of major importance in the design of structures in
aerospace and automotive engineering. Themembrane-like geometry of shells is described perfectly byNURBSwhichmakes
them attractive for the isogeometric paradigm where the geometric and parametric properties of NURBS surfaces are fully
exploited. The geometrically reduced description of thin shell structures by the shell mid-surface is harnessed by various
establishedmathematicalmodels used to describe their deformation behavior [18–20]. Kiendl et al. [21] proposed a rotation-
free isogeometric shell element based on the theory of Kirchhoff–Love which was later extended by Nagy et al. [22] for the
design of anisotropic composite shell structures. Other important developments include the isogeometric Reissner–Mindlin
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element proposed in [23–25], the hierarchic family of shell elements proposed in [15] to overcome classical locking
phenomena and solid-like shell formulations as proposed in [14,26,27].

The absence of rotational degrees of freedom in rotation-free shells request for a special treatment of essential boundary
conditions. A reliable strong enforcement of these kinematic boundary conditions is only possible in a limited number of
special cases where a sufficient number of the, in general, non-interpolatory control points exactly influence the consid-
ered boundary part and where trimmed boundaries remain unconsidered. The usual approach includes constraint degrees
of freedom at the control points along the boundary and, in addition, along a boundary neighboring row of control points
inside the shell domain [25,28]. In [8] it is shown that clamped or symmetry boundary conditions can be maintained if the
direction of the tangent normal to the geometry boundary is preserved during deformation. In cases where the boundary
is part of a trimmed geometry this approach may not be sufficient or may even fail completely. The trimming concept used
in CAD software is a common concept to simplify the model definition for visualization purposes. Defined by a trimming
curve on the governing domain patch the approach specifies regions to be faded out in the graphical representation [29,30].
This way increasing visual complexity is introduced while the geometric complexity is restricted to the shape of the un-
derlying NURBS surface. In [26,31] the trimming concept was assigned to the isogeometric analysis model. The authors
replaced trimmed areas of the graphical representation by a fictitious domain in the analysis domain. The fictitious domain
concept was adapted from the finite cell method (FCM) which was originally introduced on Cartesian grids on the basis of
the hierarchical p-FEM approximation space [32–41].

As a consequence of the restrictive modeling options for essential boundary conditions we consider an approach which
weakly enforces boundary constraints. Besides the popular penalty method [42,43] and the Lagrange multiplier method
[44–47], methods based on the idea of Nitsche [48–50] have gained much attention in the framework of isogeometric
analysis [31,37,51–56].

In this contribution we focus on Nitsche’s method to enforce weakly essential boundary conditions of rotation-free
Kirchhoff–Love shell structures including boundaries of trimmed models. We extend the Kirchhoff–Love shell formulation
variationally consistent, including transverse shear components of the stress tensor, and provide the complete set of
equations governing the elasticity problem. We choose adequate stabilization terms which are tailored to the need of the
shell problem and which ensure optimal convergence properties for the analysis. Finally, we show that the conceptual
approach can be extended easily to a formulationwhich enforces coupling constraints for isogeometric trimmedmulti-patch
models in a corresponding manner [57,58]. We provide a number of examples to demonstrate the overall performance of
our method and its enhanced flexibility based on the finite cell method.

The paper is organized as follows: we start with a brief summary of non-uniform rational B-splines in Section 2 followed
by a concise presentation of the Kirchhoff–Love shell theory in Section 3. The Nitsche extension used in our formulation is
introduced in Section 4.1. A short summary of the finite cell method and the specific boundary treatment in case of NURBS
trimming curves is provided in Section 5. Several examples are presented in Section 6. Finally, we summarize the main
findings and draw conclusions in Section 7.

2. Non-uniform rational B-splines

Isogeometric analysis applies the non-uniform rational B-splines (NURBS) used to represent the geometry of the analysis
structure to approximate the physical field and state variables in an isoparametric sense [1]. NURBS are a generalization
of B-splines and follow from a projective transformation of B-spline entities in Rd, d = {1, 2, 3} [3,59] which introduces
weights wm (m = 1, . . . ,M) as form parameters that control the NURBS shape. The definition of the shell mid-surface with
NURBS follows from a linear combination of control points Pm ∈ R3 with the respective NURBS basis functions

x(ξ , η) =


m

Rm,p(ξ , η) Pm (1)

wherem = m(i, j) and where

Rm,p(ξ , η) =
wm Ni,p1(ξ)Mj,p2(η)

n̂
i=1

n̂
j=1

wm̂ Nî,p1
(ξ)Mĵ,p2

(η)

(2)

is a multi-variate NURBS basis function of degree p. The functions Ni,p1(ξ) (i = 1, . . . , n), are one-dimensional B-splines of
polynomial degree p1 defined in the parameter space Ξ which is specified by a knot vector

Ξ = {ξ1, . . . , ξn+p+1}, ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1 (3)

consisting of a non-decreasing sequence of coordinates ξi, denoted as knots. The functions Mj,p2(η) follow in analogy to
Ni,p1(ξ). B-spline functions are defined piecewise over p + 1 knot-spans. They form a Cp−1 continuously differentiable
basis and can be constructed by the Cox–de-Boorrecursion formula [3,28]. Repeated knots lower the continuity of the basis
functions. A knot multiplicity of p + 1 for the first and last knot makes the basis interpolatory resulting in a B-spline patch
with open knot vector, cf. Fig. 1.
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