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a b s t r a c t

We study the linear space of C s-smooth isogeometric functions defined on a multi-patch
domain Ω ⊂ R2. We show that the construction of these functions is closely related to
the concept of geometric continuity of surfaces, which has originated in geometric design.
More precisely, the C s-smoothness of isogeometric functions is found to be equivalent to
geometric smoothness of the same order (Gs-smoothness) of their graph surfaces. This mo-
tivates us to call them C s-smooth geometrically continuous isogeometric functions. We
present a general framework to construct a basis and explore potential applications in iso-
geometric analysis. The space of C1-smooth geometrically continuous isogeometric func-
tions on bilinearly parameterized two-patch domains is analyzed inmore detail. Numerical
experiments with bicubic and biquartic functions for performing L2 approximation and for
solving Poisson’s equation and the biharmonic equation on two-patch geometries are pre-
sented and indicate optimal rates of convergence.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the framework of Isogeometric Analysis (IgA),whichwas introduced in [1], partial differential equations are discretized
by using functions that are obtained from a parameterization of the computational domain. Typically one considers
parameterizations by polynomial or rational spline functions (NURBS—non-uniform rational spline functions, see [2])
but other types of functions have been used also. On the one hand, this approach facilitates the data exchange with
geometric design tools, since the mathematical technology used in Computer Aided Design (CAD) is based on parametric
representations of curves and surfaces. On the other hand, it has been observed that the increased smoothness of the spline
functions compared to traditional finite elements has a beneficial effect on stability and convergence properties [3,4].

Clearly, regular single-patch NURBS parameterizations are available only for domains that are topologically equivalent
to a box. Though it is possible to extend the applicability of such parameterizations slightly by considering parameteriza-
tions with singular points (cf. [5]), it is preferable to use other techniques, due to the difficulties introduced by the use of
singularities.

One of themost promising approaches is to usemulti-patch parameterizations, which are coupled across their interfaces.
Several coupling techniques are available, such as the direct identification of the degrees of freedom along the boundaries
as in [6], the use of Lagrangian multipliers as in [7], or Nitsche’s method [8]. The approximation power of T-spline
representations, which are a generalization of NURBS that allow T-junctions and extraordinary vertices in the mesh (cf. [9]),
was explored for two-patch geometries in [10]. However, these multi-patch constructions in isogeometric analysis are
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limited to functions of low regularity (at most C0-smoothness). Consequently, the resulting numerical solutions are highly
smooth almost everywhere, except across the interfaces between the patches of the multi-patch discretization.

Another approach is the use of trimmed NURBS geometries, which can also be combined with the multi-patch method.
Such geometries have been used in the context of IgA (see e.g. [11–13]). However, trimming implies unavoidable gaps,
when two trimmed NURBS patches are joined together (cf. [14]), and often requires advanced techniques for coupling the
discretizations, see [12]. Another related technique is the use of mapped B-splines on general meshes [15].

The use of functions generated by subdivision algorithms has become a valuable alternative to NURBS, especially in
Computer Graphics, since these functions lead to gap-free surfaces of arbitrary topology (cf. [16]). One of the standard
subdivision methods is the Catmull–Clark subdivision, which generates surfaces consisting of bicubic patches, joined with
C2-smoothness everywhere except at extraordinary vertices,where they have awell-defined tangent plane. A Catmull–Clark
based isogeometric method for solids is presented in [17]. Disadvantages of using subdivision methods are the possible
reduction of the approximation power in the vicinity of extraordinary vertices, cf. [18] and the need for special numerical
integration techniques. In fact these functions are piecewise polynomial functions with an infinite number of segments.

Another possibility to deal with domains of general topology is the use of T-splines, which can represent more
complex geometries. This has been exploited in IgA, see e.g. [10,19]. However, the mathematical properties of the resulting
isogeometric functions around the extraordinary vertices are not well understood. Around extraordinary vertices, T-splines
are based on a special construction for geometrically continuous surfaces.

Geometric continuity is a well-known and highly useful concept in geometric design [20] and there exist numerous
constructions for multi-patch surfaces with this property. It can be used to construct isogeometric functions of higher
smoothness [21,22], but the systematic exploration of the potential for IgA has just started. Numerical experiments with
a multi-patch parameterization of a disk have been presented in [18]. The results indicate again a reduction of the
approximationpower (and consequently a lower order of convergence)which is causedby the extraordinary vertices, similar
to the case of subdivision algorithms.

Our paper consists of three main parts. Firstly we describe the concept of C s-smooth geometrically continuous isogeo-
metric functions on general multi-patch domains, and we present a general framework for computing a basis of the corre-
sponding isogeometric discretization space in Section 2.

We then analyze the case of C1-smooth geometrically continuous functions on bilinearly parameterized two-patch do-
mains in Section 3. The dimension of the space of these isogeometric functions is investigated and a particular selection of
the basis is proposed. In addition, generalizations of our approach to more general two-patch domains are discussed.

Finally, in order to demonstrate the potential of geometric continuity for IgA, we present numerical experiments to ex-
plore the approximation power of C1-smooth geometrically continuous isogeometric functions for bilinearly parameterized
two-patch geometries in Section 4. In addition to L2 approximation and solving Poisson’s equation, we also present results
concerning the biharmonic equation, where the use of C1-smooth test functions greatly facilitates the (isogeometric) dis-
cretization. Our numerical results indicate that the geometrically continuous representations maintain the full approxima-
tion power. This may be due to the fact that the effect of geometric continuity in our approach is not restricted to the vicinity
of an extraordinary vertex as in earlier approaches, but spread out along the entire interface between the patches.

2. Geometrically continuous isogeometric functions

We present the concept of geometrically continuous isogeometric functions on general multi-patch domains. We show
that geometric continuity of graphs of isogeometric functions is equivalent to standard continuity of isogeometric functions.
Furthermore, we present a general framework for computing a basis of the corresponding isogeometric space.

2.1. C s-smooth isogeometric functions

In order to simplify the presentation we restrict ourselves to the case of two-dimensional computational domains. Given
a positive integer n, we consider n bijective, regular geometry mappings

G(ℓ) : [0, 1]2 → R2, ℓ ∈ {1, . . . , n},

which are represented in coordinates by

ξ(ℓ) = (ξ
(ℓ)
1 , ξ

(ℓ)
2 ) → (G(ℓ)1 ,G

(ℓ)
2 ) = G(ℓ)(ξ(ℓ)),

with G(ℓ) ∈ S(ℓ) × S(ℓ), where S(ℓ) is a tensor-product NURBS space of degree dℓ ∈ N2
0. Consequently, each geometry

mapping G(ℓ), ℓ ∈ {1, . . . , n}, is defined as a linear combination of NURBS basis functions ψ (ℓ)
i : [0, 1]2 → R, i.e.,

G(ℓ)(ξ(ℓ)) =


i∈Iℓ

d(ℓ)i ψ
(ℓ)
i (ξ(ℓ)),

with a suitable index set Iℓ (a box in index space) and control points d(ℓ)i ∈ R2. Thus it is a two-dimensional regular NURBS
surface patch in R2. More precisely, we even assume that the geometry mappings G(ℓ) are defined and regular on a neigh-
borhood of [0, 1]2.
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