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Abstract

Magmas and other suspensions that develop sample-spanning crystal networks undergo a change in rheology from Newtonian to Bingham
flow due to the onset of a finite yield stress in the crystal network. Although percolation theory provides a prediction of the crystal volume fraction
at which this transition occurs, the manner in which yield stress grows with increasing crystal number densities is less-well understood. This paper
discusses a simple numerical approach that models yield stress in magmatic crystalline assemblies. In this approach, the crystal network is
represented by an assembly of soft-core interpenetrating cuboid (rectangular prism) particles, whose mechanical properties are simulated in a
network model. The model is used to investigate the influence of particle shape and alignment anisotropy on the yield stress of crystal networks
with particle volume fractions above the percolation threshold. In keeping with previous studies, the simulation predicts a local minimum in the
onset of yield stress for assemblies of cubic particles, compared to those with more anisotropic shapes. The new model also predicts the growth of
yield stress above (and close to) the percolation threshold. The predictions of the model are compared with results obtained from a critical path
analysis. Good agreement is found between a characteristic stiffness obtained from critical path analysis, the growth in assembly stiffness
predicted by the model (both of which have approximately cubic power-law exponents) and, to a lesser extent, the growth in yield stress (with a
power-law exponent of 3.5). The effect of preferred particle alignment on yield stress is also investigated and found to obey similar power-law
behavior.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Magmas and other crystal-melt suspensions are complex
multiphase materials that often contain networks of solid crystal
particles (e.g., Marsh, 1981; Cashman and Blundy, 2000). The
particles in magma complicate its rheology — affecting
viscosity, and adding porous medium flow conditions around
crystal networks to bulk material flow conditions (Kerr and
Lister, 1991; Stein and Spera, 1992; Lejeune and Richet, 1995).

Magmas with sufficiently high particle concentrations exhibit
shear thickening (Smith, 2000), and eventually the onset of
yield stress (Saar et al., 2001). At yet higher concentrations,
yield stress increases as particles are added until a completely
solidified rock exists (Petford, 2003). Understanding the
complexities of magma rheology that arise from magma
composition is key to understanding a range of magmatic
processes, such as partial melt migration and melt expulsion
from, or movement with, the solid matrix. These processes can
occur in gneiss domes, mantle plumes, and partial melts below
mid-ocean ridges or within mantle wedges (e.g., Hirth and
Kohlstedt, 1996; Kelemen et al., 1997; Teyssier and Whitney,
2002; Whitney et al., 2003). Further examples include: melt
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expulsion in plutons; lava lake solidification; volcanic magma
and surface lava flow emplacement; volcanic conduit plug
formation; magma fragmentation; and magmatic volatile
degassing (e.g., Marsh, 1982; Gardner et al., 2000; Paterson,
2001; Thompson et al., 2001; Jellinek and Kerr, 2001; Blundy
et al., 2002; Rust et al., 2003; Bachmann and Bergantz, 2004;
Blundy and Cashman, 2005; Marsh, 2006; Hammer, 2006;
Gonnermann and Manga, 2007).

At low number densities, the effects of particles on mag-
ma viscosity are described by the Roscoe–Einstein relations
(Einstein, 1906; Roscoe, 1953). At higher densities, crystals
link to form a macroscopic sample-spanning crystal network or
percolating backbone (Philpotts et al., 1998), resulting in the
onset of yield stress in the material (Kerr and Lister, 1991; Saar
et al., 2001; Jerram et al., 2003). This transition from Newtonian
to Bingham fluid can be predicted via percolation-theoretic
approaches (Stauffer and Aharony, 1992; Saar and Manga,
2002). However, the role of crystals in developing increased
magmatic yield stress for crystal volume fractions that exceed
the percolation threshold is less-well understood, particularly
when intergrowing and non-spherical particles are considered.

Onset of yield stress inmagmas has been estimated to occur at
volume fractions anywhere between 15% and 50%; estimates
of the value of the yield stress in this range vary by several orders
of magnitude (Kerr and Lister, 1991; Petford andKoender, 1998;
Hoover et al., 2001; Petford, 2003). This is in part due to
the difficulties of measuring yield stress (Nguyen and Boger,
1992; Moller et al., 2006), and partially due to variations be-
tween samples. Partial melt experiments by Hoover et al. (2001)
demonstrate that magmas with more anisotropic-shaped parti-
cles develop yield stress at smaller volume fractions than those
with more equant particles. The rheology of magmas with high
crystal number densities may also be influenced by particle
orientation (Bagdassarov and Pinkerton, 2004; James et al.,
2004). Studies of colloidal systems demonstrate that particle
alignment is a contributing factor to the rheology of suspensions
of prolate (Shaqfeh and Fredrickson, 1990) and oblate (Jogun
and Zukoski, 1999) particles. Yield stress is also affected by
the presence of bubbles in the melt, which contribute to mag-
ma rheology both directly through interactions between bubbles
(Ryerson et al., 1988; Gardiner et al., 1998) and indirectly
by rearranging the crystal network (Walsh and Saar, in
preparation).

It can be difficult to control and isolate effects from the many
sources that contribute to magma rheology, and it is often
impossible to obtain data on transient crystal-scale behavior in
real materials. Accurate numerical simulations enable investi-
gation of the rheology of these materials without being subject
to a number of the difficulties encountered in experimental
approaches. Numerical simulations allow a variety of different
particle shapes and orientations to be investigated, and crystal-
scale data to be gathered with relative ease. Although simulated
results will never replace real-world data, numerical models
offer an important adjunct to experiments that allow greater
insight into the underlying physical processes.

This paper presents a simple numerical model that aims to
reproduce the development of yield stress in bonded crystal

assemblies. In this model, crystals are represented by soft-core
interpenetrating cuboid (rectangular prism) particles, as outlined
in Section 2. These assumptions were previously adopted by
Saar et al. (2001) to investigate the transition from Newtonian to
Bingham flow in magmas. In this paper, the subsequent increase
in yield stress due to increasing particle volume fractions
is simulated using a network model given in Section 3. This
model accounts for interparticle bond strength and fracture with
a network of interparticle springs, providing estimates of
assembly stiffness and yield stress, respectively. Here, we
assume i) that the interparticle-spring stiffnesses are propor-
tional to the overlap of the cuboid particles; ii) that the particle
bonds have a high level of rotational resistance, allowing them
to resist buckling motion; and iii) that the bonds fail if the
contacting particles' relative motion exceeds a preset limit. This
approach does not account for the contribution to the yield
stress from the interparticle fluid. In Section 4, this approach is
used to investigate the influence of different factors on the yield
stress of crystal networks with particle densities above the
percolation threshold. In particular, we examine the relationship
between the yield stress and growth in the average number of
bonds per particle, the mean bond strength of the percolating
backbone based on particle overlap, and the material stiffness.
The effects of particle shape and orientation on yield stress are
investigated, and the results of the model compared with
estimates obtained from critical path analysis. Conclusions are
discussed in Section 5.

2. Soft-core crystal network

In the current model, the crystal network is represented by an
assembly of equal-sized cuboid particles, whose orientations
are chosen randomly from a predetermined distribution, Φ. Over-
lapping crystals are allowed to interpenetrate fully, resulting in
a soft-core model of crystal contact that simulates crystal inter-
growth in a zero-shear environment (Fig. 1). The spatial arrange-
ment of particle centers is described by a Poisson distribution, such
that the probability of finding k particles within a given volume,V, is

P N Vð Þ ¼ kð Þ ¼ nVð Þkexp �nVð Þ=k!; ð1Þ

where N(V) is the number of particles within the volume and n
is the particle number density. From Eq. (1), the average
number of particle centers that lie within a region of volume V isP

kkP(N(V)=k)=nV, while the volume fraction, ϕ, of the over-
lapping particles is

/ ¼
Xl
k¼0

1� 1� v=Vð Þk
� �

P N Vð Þ ¼ kð Þ
¼ 1� exp �nvð Þ; ð2Þ

where v is the volume of a single particle (Garboczi et al., 1991).
Soft-core particle systems are often employed in continuum

percolation studies (Meester, 1996). Percolation theory
describes the relationship between assembly interconnectivity
and the shape, number density, spatial distribution, and
orientation of the assembly's constituent objects. The geometric
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