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a b s t r a c t

The strategy for computing the Boltzmann collision integrals for gaseous mixtures is
presented and bestowed to compute the fully non-linear Boltzmann collision integrals for
hard sphere gas-mixtures. The Boltzmann collision integrals associated with the first 26
moments of each constituent in a gas-mixture are presented. Moreover, the Boltzmann
collision integrals are exploited to study the relaxation phenomena of diffusion velocities,
stresses and heat fluxes in binary gas-mixtures of Maxwell molecules and hard spheres.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The gaseousmixtures are encounteredmore often than a single gas in practice and the description of processes in rarefied
gas-mixtures far from equilibrium is a real challenge. It is eminent that the Boltzmann equation(s) can well describe the
processes in rarefied gases (for both single gas aswell as gaseousmixtures) [1,2]. Nevertheless, the direct numerical solution
of the Boltzmann equation – e.g., by discrete velocity method [3] or direct simulation Monte Carlo (DSMC) method [4] – are
computationally very expensive, especially, in the transition regime [5]. Therefore, the proper models for describing the
rarefied gas flows in the transition regime are desired.

The main source of difficulty in dealing with the Boltzmann equation is its collision term, referred to as the Boltzmann
collision operator. In the context of a single gas, the Boltzmann collision operator can be approximated by the well-
known Bhatnagar–Gross–Krook (BGK)model [6], which drastically simplifies the Boltzmann equation. Several authors have
attempted to obtain the similar BGK model for gaseous mixtures, see e.g. [7–14], however most of these models either fail
to reproduce the correct transport coefficients or do not satisfy some fundamental properties. The recent works [13,14] first
consider the transport coefficients computed either by hydrodynamic limit of the Boltzmann equation or by experiments
and then construct the BGK model by fitting these coefficients into the model, however both the works are restricted to
obtain only correct Fick’s and Newton’s laws.

The alternative approaches to deal with the Boltzmann equation protrude through kinetic theory. The two well-known
methods in kinetic theory to solve the Boltzmann equation approximately are the Chapman–Enskog expansion (CE)
method [1,5,15,16] and Grad’s momentmethod [17,5,15]. Both themethods have been successfully extended to the gaseous
mixtures [1,18,19]. While the higher-order equations resulting from the CE method in case of a single gas are known to
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suffer from instabilities [20], the moment equations resulting from Grad’s moment method are always stable [5]. Despite
the success of Grad’s moment method and its variants (e.g., [21]) in describing many rarefaction effects in case of a single
gas [22–25], Grad’s moment method for mixtures has not been exploited enough. One reason, among others, could be the
computation of the production terms or the Boltzmann collision integrals, which emanate from the Boltzmann collision
operator while deriving the moment equations.

In this paper, we present the strategy for computing the full non-linear production terms for gaseous mixtures of
monatomic–inert–ideal gases interacting with any general interaction potential. However, due to the complex structure
of the production terms for general interaction potential, we restrict ourselves to provide the production terms explicitly
associated with first 26 moments in Grad’s 26-moment (G26) system for each constituent only in a gaseous mixture of
hard spheres (HS). The corresponding production terms for Maxwell molecules (MM) can be found in [26]. This part of
the present paper can be considered as a follow up of [27], where we computed the (quasi-)linear production terms for
binary gas-mixtures of hard spheres. Furthermore, we study the relaxation of diffusion velocities, stresses and heat fluxes
of individual components in binary gas-mixtures using these production terms.

The structure of the paper is as follows. The Boltzmann equations for gaseousmixture, few definitions and the production
terms are introduced in Section 2. The procedure for computing the production terms is detailed in Section 3. The relaxation
phenomena in binary HS gas-mixtures and in binary MM gas mixtures is studied in Section 4. The conclusions are given in
Section 5.

2. Boltzmann equations

The Boltzmann equation for a constituent α (α = 1, 2, . . . ,N) in a N-component monatomic–inert–ideal gas mixture
reads [1,18,15,27,26]
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where fα ≡ fα(x, cα, t) is the distribution function of the α-constituent in the mixture; Fα is the external force per unit
mass acting on the α-species; gαβ = cα − cβ is the relative velocity; b is the collision parameter; ϵ is the collision angle;
x, cα , t denote the position, instantaneous velocity and time, respectively; the primes on distribution functions denote the
distribution functions with post-collision velocities, e.g., f ′

α ≡ fα(x, c ′
α, t); and the right-hand side (RHS) of (1) is termed as

the Boltzmann collision operator. Hereafter, unless necessary, we shall suppress the limits over the integrations and only one
integration symbol will be used in order to make the notations compact. Furthermore, the integrals over any velocity space
should always be understood as the volume integrals over all the components of that velocity, each ranging from−∞ to∞.

The moment of the distribution function fα with respect to a function ψα ≡ ψα(x, cα, t) is defined as

⟨ψα⟩ =


ψα fα dcα, (2)

and the governing equation for the moment ⟨ψα⟩, referred to as the moment equation for ⟨ψα⟩, can be obtained by
multiplying the Boltzmann equation (1) with ψα and integrating over the velocity space cα . The derivation of moment
equations is omitted here and the reader is referred to [26] for the detailed derivation of Grad’s N × 26 moment equations
for aN-component gaseousmixture. Nevertheless, the Boltzmann collision operator onmultiplyingwithψα and integrating
over the velocity space cα yields
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which is referred to as the production term or the Boltzmann collision integral for ψα . The typical structure of ψα is

ψα = mαC2a
α C (α)

⟨i1
· · · C (α)in⟩ (4)

where a and n are non-negative integers,mα is the molecular mass of α-species, Cα = cα − v is the peculiar velocity with v
being themass-averaged velocity of themixture defined in (7)2, and angle brackets around the indices denote the symmetric
trace-free tensors [5]. Therefore, the typical form of the production term is
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fα fβ gαβ b db dϵ dcα dcβ . (5)

In writing (5), the symmetry properties of the Boltzmann collision operator [1,5] have been employed. Some of the physical
quantities for the constituent α (α = 1, 2, . . . ,N) – density ρα(x, t), diffusion velocity uα(x, t), temperature Tα(x, t), stress
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