
Computers and Mathematics with Applications 69 (2015) 477–493

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Coupled nonlinear advection–diffusion–reaction system for
prevention of groundwater contamination by modified
upwind finite volume element method✩

Wei Liu a,∗, Jian Huang b, Xiaohan Long a

a School of Mathematics and Statistics Science, Ludong University, Yantai, Shandong, 264025, China
b School of Mathematics, Shandong University, Jinan, Shandong, 250100, China

a r t i c l e i n f o

Article history:
Received 21 May 2014
Received in revised form 29 November
2014
Accepted 1 January 2015
Available online 14 February 2015

Keywords:
Finite volume element
Modified upwind approximation
Error estimates
Nonlinear problem
Two-grid method

a b s t r a c t

The coupled advection-dominated diffusion reaction equations arising in the prevention
of groundwater contamination problem are approximated by the modified upwind finite
volume element method. In order to solve the resulting nonlinear system efficiently, we
use a two-grid algorithm to decompose the nonlinear system into a small nonlinear sys-
tem on a coarse grid with mesh size H and a linear system on a fine grid with mesh size
h. It is shown that the approximation still achieves asymptotically optimal as long as the
mesh sizes satisfy H = O(h1/3). Numerical examples are presented to illustrate efficiency
and accuracy of the proposed method.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We shall consider a mathematical model for prevention and control of groundwater contaminant with the microbiolog-
ical technology. The model can be described as the following coupled nonlinear advection–diffusion–reaction equations,

St + ϑ(x) · ∇S − ∇ · (D(x)∇S)+ Mpe1f (S, A) = 0, inΩ × (0, T ],

At + ϑ(x) · ∇A − ∇ · (D(x)∇A)+ Mpe2f (S, A) = 0, inΩ × (0, T ],

(Ms)t + ϑ(x) · ∇Ms − ∇ · (D(x)∇Ms)+ Mse3f (S, A)+ r(x)Ms = 0, inΩ × (0, T ],

S |∂Ω = A |∂Ω = Ms |∂Ω = 0, on ∂Ω × (0, T ],

S(x, 0) = S0(x), A(x, 0) = A0(x), Ms(x, 0) = (Ms)0(x), inΩ,

(1.1)

whereΩ ⊂ R2 is a bounded domain with a Lipschitz continuous boundary ∂Ω . S is the concentration of the main ground
substance, A is the aqueous solution electrolyte concentration, andMs is the concentration of microorganism (e.g. bacteria).
The velocity vector ϑ(x) = (ϑ1(x), ϑ2(x)), which are given functions inΩ , stands for the average linearized groundwater
velocity. D(x) is a hydrodynamic diffusion function.Mp is the total concentration of active microorganism andMs = Mp/RM
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with a positive constant RM . ei are positive constants for i = 1, 2, 3. Here,

f (S, A) =
S

Ks + S
·

A
Ka + A

and Ks, Ka are positive constants. We can refer to [1] about the meanings of the notations for details.
We suppose the variable coefficients ϑ(x), D(x) and r(x) satisfy
(1) 0 < k1 ≤ D(x) ≤ k2, D(x) ∈ W 1

∞
(Ω);

(2) |ϑi(x)| ≤ αi, ϑi(x) ∈ W 1
∞
(Ω);

(3) r(x) ≤ r1;

where r1 and ki, αi (i = 1, 2) are positive constants.
Modified upwind finite volume method as an important numerical tool for solving the convection-dominated diffusion

problems inherits the advantage of upwind finite volume scheme. It can achieve the unconditional stability and eliminate the
excessive numerical dispersion effectively in the process of obtaining the approximation solutions. Besides, with superiority
to the upwind scheme, the modified upwindmethod improves the accuracy to second order in space increment. As a result,
it is popular in the mathematical models that arise in petroleum reservoir simulation, subsurface contaminant transport,
seawater intrusion and many other significant problems. In the past several decades, many researchers have studied mod-
ified upwind finite volume method extensively and obtained some important results. We refer to [2–7] and the references
cited therein.

On the other hand, the two-grid method, based on two conforming spaces, was first introduced by Xu [8,9] for the non-
symmetric and nonlinear elliptic problems. The basic idea of this approach is to firstly solve the original nonlinear equations
on a coarse grid with mesh size H and then solve a linearized problem on the fine grid with mesh size h by using Newton
iteration once. Later on, the two-grid method was further investigated by many authors. For instance, Liu–Rui–Guo [10]
gave the detailed analysis of this approach to nonlinear reaction–diffusion problem by expanded mixed finite element
method, Bi–Ginting [11] used the finite volume element method with two-grid method to obtain the solutions of linear
and nonlinear elliptic problems, Chen–Liu [12] applied two-grid finite volume element method to the semi-linear parabolic
equations, Wu–Allen [13] and Chen–Chen [14] provided two-grid techniques to the reaction–diffusion equation, Daw-
son–Wheeler–Woodward [15] studied the two-grid finite difference scheme for parabolic problems.

In this paper, we apply modified upwind finite volume element scheme to approximate the coupled nonlinear problem
(1.1) with the advection-dominated term. Unfortunately, the resulting algebraic system of equations is a large coupled sys-
temof nonlinear equations. So it is necessary for us to use the two-gridmethod. By this approach, solving the coupled nonlin-
ear systemon the fine space is reduced to solving a linear systemon the fine space and a smaller nonlinear systemon a coarse
space. Furthermore, it is proved and illustrated that this method can obtain the numerical solutions without sacrificing the
order of accuracy and achieve asymptotically optimal approximation as long as the mesh sizes satisfy H = O(h1/3). As we
know, there is nomodified upwind finite volume element convergence analysis for this kind of advection–diffusion–reaction
equations by using two-grid techniques. Here, we present the method and error estimates that partly fill this gap.

The remainder of the paper is organized as follows. In Section 2,we present somenotations and describe the finite volume
element scheme for system (1.1). The modified upwind approximation formulation is introduced and error estimate in L2
norm is presented in Section 3. In Section 4, the two-gridmethod is proposed and convergence results inH1 norm are shown
that the method has no loss in accuracy. Some numerical examples are used to testify the theoretical results in Section 5.

Throughout this paper, we use C to denote a generic positive constant independent of the discretization parameters with
possibly different values in different contexts.

2. Notations and preliminaries

For the simple presentation, we assume the domainΩ is a rectangle with its sides parallel to the axes x1 and x2, we apply
the grid for the cell-centered finite volume scheme, mainly because of their good conservation properties which are popular
in fluid simulation, heat transfer and weather prediction problems. After covering the plane R2 by square cells with sides
of length h, we denote the grid points by Pi,j = (x1,i, x2,j) = (ih, jh), where i, j = 0, 1, . . . ,M are integer indices. For the
Dirichlet boundary condition, we shall suppose the ∂Ω passes through the grid points as follows:

0 = x1,0 < x1, 12 < x1,1 < · · · < x1,M−1 < x1,M−
1
2
< x1,M = 1;

and

0 = x2,0 < x2, 12 < x2,1 < · · · < x2,M−1 < x2,M−
1
2
< x2,M = 1,

where x1,i± 1
2

= x1,i ± h
2 , x2,j± 1

2
= x2,j ± h

2 .
Let

ω = {(x1,i, x2,j) ∈ Ω : i, j = 0, 1, . . . ,M}, ω = ω ∩Ω, Γ = ω \ ω,

Γ ±

l = {P ∈ Γ : cos(xl, n) = ±1}, ω±

l = ω ∪ Γ ±

l , l = 1, 2,

where n is the unit outer normal to the boundary ∂Ω .
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