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a b s t r a c t

A numerical method for solving the equations modeling acoustic scattering in three di-
mensions is presented. The method is capable of handling several dozen scatterers, each of
which is severalwave-lengths long, on a personalwork station. Even for geometries involv-
ing cavities, solutions accurate to seven digits or better were obtained. The method relies
on a Boundary Integral Equation formulation of the scattering problem, discretized using
a high-order accurate Nyström method. A hybrid iterative/direct solver is used in which a
local scatteringmatrix for each body is computed, and then GMRES, accelerated by the Fast
Multipole Method, is used to handle reflections between the scatterers. The main limita-
tion of the method described is that it currently applies only to scattering bodies that are
rotationally symmetric.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper presents a robust and highly accurate numerical method for modeling frequency domain acoustic scattering
on a domain external to a group of scatterers in three dimensions. The solver is designed for the special case where each
scatterer is rotationally symmetric, and relies on a Boundary Integral Equation (BIE) formulation of the scattering problem.

The contribution of this paper is to combine several recently developed techniques to obtain a solver capable of solving
scattering problems on complexmultibody geometries in three dimensions to seven digits of accuracy ormore. In particular,
the solver is capable of resolving domains involving cavities such as, e.g., the geometry shown in Fig. 5(a).

The solution technique proposed involves the following steps:

(1) Reformulation. The problem is written mathematically as a BIE on the surface of the scattering bodies using the ‘‘com-
bined field’’ formulation [1,2]. See Section 2 for details.

(2) Discretization. The BIE is discretized using the Nyström method based on a high-order accurate composite Gaussian
quadrature rule. Despite the fact that the kernel in the BIE is singular, high accuracy can bemaintained using the correc-
tion techniques of [3,4]. Following [5], we exploit the rotational symmetry of each body to decouple the local equations
as a sequence of equations defined on a generating contour [6–10]. This dimension reduction technique requires an
efficient method for evaluating the fundamental solution of the Helmholtz equation in cylindrical coordinates (the so
called ‘‘toroidal harmonics’’); we use the technique described in [11]. See Section 3 for details.
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(3) Iterative solver. The dense linear system resulting from the Nyström discretization of the BIE is solved using the iterative
solver GMRES [12], combined with a block-diagonal pre-conditioner, as in, e.g., [13, Section 6.4]. This pre-conditioner
exploits that a highly accurate discrete approximation to the scattering matrix for each individual scatterer can be com-
puted efficiently. See Section 4 for details.

(4) Fast matrix–vector multiplication. The application of the coefficient matrix in the iterative solver is accelerated using
the Fast Multipole Method (FMM) [14], specifically the version for the Helmholtz equation developed by Gimbutas and
Greengard [15].

(5) Skeletonization. In situations where the individual scatterers are not packed very tightly, the number of degrees of free-
dom in the global system can be greatly reduced by exploiting rank deficiencies in the off-diagonal blocks of the coeffi-
cientmatrix. Specifically, we use a variation of the scheme introduced in [16], and further developed in [17]. Randomized
methods are used to accelerate the computation of low-rank approximations to large dense matrices [18]. See Section 5
for details.

The present work draws on several recent papers describing techniques for multibody scattering, including [13], which
applies a very similar technique to acoustic scattering in two dimensions. [19] addresses the harder problem of electro-
magnetic scattering in 3D (as opposed to the acoustic scattering considered here), but uses classical scattering matrices
expressed in spherical harmonics. This is a more restrictive framework than the one used in [13] for problems in 2D, and in
the present work for problems in 3D. The more general model for a compressed scattering matrix that we use here allows
for larger scatterers to be handled, and also permits it to handle scatterers closely packed together. For a deeper discussion
of different ways of representing compressed scattering matrices, see [20].

To describe the asymptotic cost of the method presented, let m denote the number of scatterers, let n denote the total
number of discretization nodes on a single scatterer and let I denote the number of iterations required in our pre-conditioned
iterative solver to achieve convergence. The cost of building all local scattering matrices is then O(mn2), and the cost of
solving the linear system consists of the time TFMM required for applying the coefficient matrices using the FMM, and the
time Tprecond required for applying the block-diagonal preconditioner. These scale as TFMM ∼ Imn and Tprecond ∼ Imn3/2

(cf. Remark 4), but for practical problem sizes, the execution time is completely dominated by the FMM. For this reason, we
implemented a ‘‘skeletonization’’ compression scheme [16] that reduces the cost of executing the FMM from Imn to Imk,
where k is a numerically determined ‘‘rank of interaction’’. We provide numerical examples in Section 6 that demonstrate
that when the scatterers are moderately well separated, k can be smaller than n by one or two orders of magnitude, leading
to dramatic practical acceleration.

2. Mathematical formulation of the scattering problem

Let {Γp}
m
p=1 denote a collection ofm smooth, disjoint, rotationally symmetric surfaces inR3, letΓ = ∪

m
p=1 Γp denote their

union, and let Ω denote the domain exterior to Γ . Our task is to compute the ‘‘scattered field’’ u generated by an incident
field v that hits the scattering surface Γ , see Fig. 1. For concreteness, we consider the so called ‘‘sound-soft’’ scattering
problem

−1u(x) − κ2u(x) = 0 x ∈ Ωc,

u(x) = −v(x) x ∈ Γ ,

∂u(x)
∂r

− iκu(x) = O(1/r) r := |x| → ∞.

(1)

We assume that the ‘‘wave number’’ κ is a real non-negative number. It is known [1] that (1) has a unique solution for every
incoming field v.

Following standard practice, we reformulate (1) as second kind Fredholm Boundary Integral Equation (BIE) using a so
called ‘‘combined field technique’’ [1,2]. We then look for a solution u of the form

u(x) =


Γ

Gκ(x, x′) σ (x′) dA(x′), x ∈ Ωc, (2)

where Gκ is a combination of the single and double layer kernels,

Gκ(x, x′) =
∂φκ(x, x′)

∂n(x′)
+ iκ φκ(x, x′) (3)

and where φκ is the free space fundamental solution

φκ(x, x′) =
eiκ|x−x′|

4π |x − x′|
. (4)

Eq. (2) introduces a new unknown function σ , which we refer to as a ‘‘boundary charge distribution’’. To obtain an equation
for σ , we take the limit in (2) as x approaches the boundary Γ , and find that σ must satisfy the integral equation

1
2
σ(x) +


Γ

Gκ(x, x′) σ (x′) dA(x′) = −v(x), x ∈ Γ . (5)
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