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We present several versions of Regularized Combined Field Integral Equation (CFIER) for-
mulations for the solution of three dimensional frequency domain electromagnetic scatter-
ing problems with Perfectly Electric Conducting (PEC) boundary conditions. Just as in the
Combined Field Integral Equations (CFIE), we seek the scattered fields in the form of a com-
bined magnetic and electric dipole layer potentials that involves a composition of the latter
type of boundary layers with regularizing operators. The regularizing operators are of two
types: (1) modified versions of electric field integral operators with complex wavenum-
bers, and (2) principal symbols of those operators in the sense of pseudodifferential oper-
ators. We show that the boundary integral operators that enter these CFIER formulations
are Fredholm of the second kind, and invertible with bounded inverses in the classical trace
spaces of electromagnetic scattering problems. We present a spectral analysis of CFIER op-
erators with regularizing operators that have purely imaginary wavenumbers for spherical
geometries—we refer to these operators as Calderon-Ikawa CFIER. Under certain assump-
tions on the coupling constants and the absolute values of the imaginary wavenumbers
of the regularizing operators, we show that the ensuing Calderén-Ikawa CFIER operators
are coercive for spherical geometries. These properties allow us to derive wavenumber ex-
plicit bounds on the condition numbers of Calderén-Ikawa CFIER operators. When regular-
izing operators with complex wavenumbers with non-zero real parts are used—we refer to
these operators as Calderon-Complex CFIER, we show numerical evidence that those com-
plex wavenumbers can be selected in a manner that leads to CFIER formulations whose
condition numbers can be bounded independently of frequency for spherical geometries.
In addition, the Calderén-Complex CFIER operators possess excellent spectral properties
in the high-frequency regime for both convex and non-convex scatterers. We provide nu-
merical evidence that our solvers based on fast, high-order Nystrém discretization of these
equations converge in very small numbers of GMRES iterations, and the iteration counts
are virtually independent of frequency for several smooth scatterers with slowly varying
curvatures.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The simulation of frequency domain electromagnetic wave scattering gives rise to a host of computational challenges
that mostly result from oscillatory solutions, and ill-conditioning in the low and high-frequency regimes. Computational
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modeling of electromagnetic scattering has been attempted based on the classical Finite-Difference Time-Domain (FDTD)
methods. However, algorithms based on the finite-difference or finite-element discretizations require discretization of un-
occupied volumetric regions and give rise to numerical dispersion which is inevitably associated with numerical propaga-
tion of waves across large numbers of volumetric elements [1]. An important computational alternative to finite-difference
and finite-element approaches is found in boundary integral methods. Numerical methods based on integral formulations of
scattering problems enjoy a number of attractive properties as they formulate the problems on lower-dimensional, bounded
computational domains and capture intrinsically the outgoing character of scattered waves. Thus, on account of the dimen-
sional reduction and associated small discretizations (significantly smaller than the discretizations required by volumetric
finite-element or finite-difference approximations), in conjunction with available fast solvers [2-12], numerical algorithms
based on integral formulations, when applicable, can outperform their finite-element/difference counterparts. On account
of this, and whenever possible, the simulation of high-frequency scattering problems relies almost exclusively on bound-
ary integral equations based solvers. There has been significant recent progress on extending the range of high-frequency
solvers that can be solved by boundary integral equation solvers, mostly in the case of scalar problems with Dirichlet bound-
ary conditions. This was made possible by hybrid methods that incorporate the known oscillatory behavior of solutions of
boundary integral equations at high frequencies in order to reduce drastically the number of unknowns—see the excellent
review paper [13] for a full account of these methods.

While well-conditioned integral formulations for scalar problems with Dirichlet boundary conditions have been known
and used for quite some time, that is not the case for electromagnetic problems. The scope of this paper is to address
the question: what integral equations should one use for the efficient simulation of high-frequency frequency-domain
electromagnetic scattering problems. The most widely used integral equation formulations for solution of frequency domain
scattering problems from perfectly electric conducting (PEC) closed three-dimensional objects are the Combined Field
Integral Equations (CFIE) formulations [14]. The CFIE are uniquely solvable throughout the frequency spectrum, yet the
spectral properties of the boundary integral operators associated with the CFIE formulations are not particularly suited for
Krylov-subspace iterative solvers such as GMRES [11,15]. This is attributed to the fact that the electric field (EFIE) operator,
which is a portion of the CFIE, is a pseudodifferential operator of order 1 [16,17]—that is, asymptotically, the action of
the operator in Fourier space amounts to multiplication by the Fourier-transform variable. Consistent with this fact, the
eigenvalues of these operators accumulate at infinity, which causes the condition numbers of CFIE formulations to grow
with the discretization size, a property that is shared by integral equations of the first kind. The lack of well conditioning
of the operators in CFIE is exacerbated at high frequencies, a regime where CFIE require efficient preconditioners that
should ideally control the amount of numerical work entailed by iterative solvers. In this regard, one possibility is to use
algebraic preconditioners, typically based on multi-grid methods [ 18], or Frobenius norm minimizations and sparsification
techniques [19]. However, the generic algebraic preconditioning strategies are not particularly geared towards wave
scattering problems, and, in addition, they may encounter convergence breakdowns at higher frequencies that require large
discretizations [20,21].

On the other hand, several alternative integral equation formulations for PEC scattering problems that possess good
conditioning properties have been introduced in the literature in the past fifteen years [22-25,15,11,26-29]. Some of these
formulations were devised to avoid the well-known “low-frequency breakdown” [30,28]. For instance, the current and
charge integral equation formulation [29], although not Fredholm of the second kind, does not suffer from the low-frequency
breakdown and has reasonable properties throughout the frequency range [31]. Another class of Fredholm boundary integral
equations of the second kind for the solution of PEC electromagnetic scattering problems can be derived using generalized
Debye sources [28]. Although these formulations targeted the low frequency case, their versions that use single layers with
imaginary wavenumbers possess good condition numbers for higher frequencies for spherical scatterers [32].

Another wide class of formulations that is directly related to the present work can be viewed as Regularized Integral
Equations as they typically involve using pseudoinverses/regularizers of the electric field integral operators to mollify the
undesirable derivative-like effects of the latter operators. In the cases when the scattered electric fields are sought as lin-
ear combinations of magnetic and electric dipole distributions, the former acting on tangential densities while the latter
acting on certain regularizing operators of the same tangential densities, the enforcement of the PEC boundary conditions
leads to Regularized Combined Field Integral Equations (CFIER) or Generalized Combined Sources Integral Equations (GC-
SIE). In the case of smooth scatterers, the various regularizing operators proposed in the literature one the one hand (a)
stabilize the leading order effect of the pseudodifferential operators of order 1 that enter CFIE, so that the integral operators
in CFIER are compact perturbations of invertible diagonal matrix operators and (b) have certain coercivity properties that
ensure the invertibility of the CFIER operators. One way to construct regularizing operators that achieve the objective (a)
can be pursued in the framework of approximations of admittance/Dirichlet-to-Neumann operators (that is the operators
that map the values of the vector product between the unit normal and the electric field on the surface of the scatterer to the
value of the vector product between the unit normal and the magnetic field on the surface of the scatterer—see Section 5)
[26,22,23,25] which can be connected to on-surface radiation conditions (OSRC) [33]. Another way to construct such oper-
ators is to start from Calderén’s identities [ 15,24,27,11] that establish that the square of the electric field integral operator
is a compact perturbation of the identity. All of these regularizing operators are either electric field integral operators, its
vector single layer components, or their principal symbols in the sense of pseudodifferential operators. The regularizing
operators that have property (a) can be modified to meet the requirement (b) either via quadratic partitions of unity [22,23]
or by means of complexification of the wavenumber in the definition of electric field integral operators or its components
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