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a b s t r a c t

We consider a general matrix iterative method of the type Xk+1 = Xkp(AXk) for computing
an outer inverse A(2)R(G),N (G), for given matrices A ∈ Cm×n and G ∈ Cn×m such that
AR(G) ⊕ N (G) = Cm. Here p(x) is an arbitrary polynomial of degree d. The convergence
of the method is proven under certain necessary conditions and the characterization of all
methods having order r is given. The obtained results provide a direct generalization of
all known iterative methods of the same type. Moreover, we introduce one new method
and show a procedure how to improve the convergence order of existing methods. This
procedure is demonstrated on one concrete method and the improvement is confirmed by
numerical examples.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Generalized inverse computation is an important problem for many practical applications, including statistics and
automatic control. They are defined as suitable generalizations of the ordinary inverse for a non-singular matrix A ∈ Cm×n.
Consider the following matrix equations (known as Penrose equations [1,2]):

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

Any matrix X ∈ Cn×m which satisfies Eq. (2), i.e. XAX = X , is called an outer inverse of A and denoted by X = A(2). If
we require that X is the solution of all equations (1)–(4) then such matrix X = AĎ is unique and called the Moore–Penrose
inverse. There are also a few more types of generalized inverses satisfying some of the following additional equations

(1l) AlXA = Al, (5) AX = XA, (3M) (MAX)∗ = MAX, (4N) (XAN)∗ = XAN.

The unique matrix X = AD
∈ Cn×n satisfying (1l), (2) and (5), for a given square matrix A ∈ Cn×n is called the Drazin inverse

of A. Here, l = ind(A) is the smallest integer such that rank(Al) = rank(Al+1). On the other side, matrix X = AĎM,N ∈ Cn×m,
satisfying (1), (2), (3M) and (4N) for the givenHermitian symmetric andpositive definitematricesM ∈ Cm×m andN ∈ Cn×n,
is called the weighted Moore–Penrose inverse of A. For more information regarding basic and advanced properties of the
generalized inverse, see for example [1,2].

If T is a subspace of Cn and S is a subspace of Cm such that

AT ⊕ S = Cm
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then there exists a unique matrix X ∈ Cn×m such that XAX = X , R(X) = T and N (X) = S. This matrix is called an outer
inverse with a prescribed range and null space and denoted by X = A(2)T ,S . If T = R(G) and S = N (G) for G ∈ Cn×m, then X
is an outer inverse corresponding to the matrix G. We will refer to X as the G-inverse.

It is well-known [1] that X reduces to various generalized inverses, by an appropriate choice of G. Hence

X =


A−1, G = A∗, A is regular;
AĎ, G = A∗

;

AĎM,N , G = A♯;
A#, G = A, ind(A) = 1;
AD, G = Al, l ≥ ind(A);

(1.1)

where A♯ = N−1A∗M denotes the weighted conjugate-transpose matrix of A. There are many papers which deal with the
representation, approximation and computation of outer G-inverses (see for example [3–7]). If s = rank(G) = rank(AG)
and G = VW is the full-rank factorization, where V ∈ Cn×s and W ∈ Cs×m, the inverse X can be computed by [6]:

X = V (WAV )−1W .

Note thatR(X) = R(V ) andN (X) = N (W ). All methods for computing (generalized) matrix inverses are divided into two
major classes: direct and iterative methods. Recently published direct methods are usually based on SVD (Singular Value
Decomposition), QR factorization [8], Cholesky (or LDL∗) factorization [9,10], Gaussian elimination [6,11], etc.

There are also a number of iterativemethods for the computation of the inversematrix or someof its generalized inverses.
The most important is the Schultz method given by

Xk+1 = Xk(2I − AXk). (1.2)

It is shown that the Schultzmethod can be used for theMoore–Penrose [12], Drazin [13] and G-inverse [14,15] computation.
The initial matrix is chosen by X0 = αG such that |1 − αλi| < 1 where λi (i = 1, 2, . . . , s) are non-zero eigenvalues of AG
and s = rank(AG) = rank(G).

One can define a natural generalization of the Schultz method by:

Xk+1 = Xk(I + Rk + · · · + Rr−1
k ), Rk = I − AXk. (1.3)

This is a well-known method (called the hyper-power method) for an inverse matrix computation and has the order r . It is
extended to the computation of the (1) inverse [16], Moore–Penrose inverse [17,18] and G-inverse [19,20]. Themethod (1.3)
can be also written in the form:

Xk+1 = Xkp(AXk), p(x) =

r
i=1

(−1)i−1
 r
i


xi−1.

Many different methods of the same type Xk+1 = Xkp(AXk) appeared in the past few years (see for example [21] and
later [22–25]). We refer to them as the generalized Schultz methods. Those methods are usually induced by applying a non-
linear equation solver to the equation F(x) = x−1

− a = 0, while methods from [21,25] are based on the Penrose equations
(2) and (4).

Some other variants of iterative methods for computing generalized inverses are given in [26]. All mentioned papers
consider the particular treatment of those methods and the proof of convergence for some particular generalized inverse.

The aim of this paper is to show the general result regarding the convergence of the arbitrary generalized Schultz
method in the case of the outer G-inverse. As a particular result, we obtain extensions of the previously mentioned
methods. Furthermore, we show the characterization of all polynomials p(x) such that the generalized Schultz method
Xk+1 = Xkp(AXk) has the order of convergence at least r . Such characterization provides the mechanism to construct many
new methods of the same kind. This mechanism is demonstrated by improving the order of convergence of one known
method and by constructing one new method. Both new methods and a few existing methods are tested on different
randomly generated matrices.

2. Generalized Schultz iterative method for computing a−1

Consider the following scalar iterative method

xk+1 = xkp(axk) (2.1)

for solving the equation ax = 1 where a ≠ 0 is an arbitrary (complex) number and

p(x) = p0 + p1x + · · · + pdxd (2.2)

is a given polynomial of degree d. Method of type (2.1) usually appears by applying some non-linear equation solver to the
equation f (x) = x−1

− a = 0 (see for example [22–24]).

Proposition 2.1. Assuming that method (2.1) is convergent, i.e. that xk → 1/a when k → +∞, then p(1) = 1.
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