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a b s t r a c t

In this paper we present computational cost estimates for parallel shared memory isogeo-
metric multi-frontal solvers. The estimates show that the ideal isogeometric shared mem-
ory parallel direct solver scales asO(p2 log(N/p)) for one dimensional problems,O(Np2) for
two dimensional problems, and O(N4/3p2) for three dimensional problems, where N is the
number of degrees of freedom, and p is the polynomial order of approximation. The compu-
tational costs of the shared memory parallel isogeometric direct solver are compared with
those corresponding to the sequential isogeometric direct solver, being the latest equal to
O(Np2) for the one dimensional case, O(N1.5p3) for the two dimensional case, and O(N2p3)
for the three dimensional case. The shared memory version significantly reduces both the
scalability in terms of N and p. Theoretical estimates are compared with numerical exper-
iments performed with linear, quadratic, cubic, quartic, and quintic B-splines, in one and
two spatial dimensions.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Classical higher order finite element methods (FEM) [1,2] maintain only C0-continuity at the element interfaces, while
isogeometric analysis (IGA) utilizes B-splines as basis functions, and thus, it delivers Ck global continuity [3]. The higher
continuity obtained across elements allows IGA to attain optimal convergence rates for any polynomial order, while using
fewer degrees of freedom [4,5]. Nevertheless, this reduced count in the number of degrees of freedom may not immedi-
ately correlate with a computational cost reduction, since solution time per degree of freedom augments as the continuity
is increased [6,7]. In spite of the increased cost of higher-continuous spaces, they have proven very popular and useful.
For example, higher-continuous spaces have allowed the solution of higher-order partial differential equations with ele-
gance [8–13] as well as several non-linear problems of engineering interest [14–21]. Thus, efficient multi-frontal solvers for
higher-continuous spaces are important.

The multi-frontal solver is one of the state-of-the art algorithm for solving linear systems of equations [22,23]. It is a
generalization of the frontal solver algorithm proposed in [24,25]. The multi-frontal algorithm constructs an assembly tree
based on the analysis of the connectivity data or the geometry of the computational mesh. Finite elements are joined into
pairs and fully assembled unknowns are eliminated within frontal matrices associated to multiple branches of the tree. The
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process is repeated until the root of the assembly tree is reached. Finally, the common interface problem is solved and partial
backward substitutions are recursively called on the assembly tree.

There exist parallel versions of the multi-frontal direct solver algorithm targeting distributed-memory, shared-memory,
or hybrid architectures. The partition of data for distributed memory architecture may concern the redistribution of the
computational mesh into sub-domains with overlapping or non-overlapping elements [26,27], the redistribution of the
global matrix [28], or the redistribution of the elimination tree [29–32].

There also exist some versions of themulti-frontal solver algorithm for sharedmemorymachines. These algorithms store
the entire matrix in the sharedmemory and performmatrix operations concurrently [33–35]. The matrix is partitioned into
blocks with BLAS operations performed concurrently over each block.

One limitation of the IGA is the fact that direct solvers work slower, due to inconvenient sparsity pattern of the resulting
matrix [7]. In particular, the sequential IGA direct solvers delivers O((N/p)p2) computational cost for one dimensional
problems (1D),O(N1.5p3) for two dimensional problems (2D), andO(N2p3) for three dimensional problems (3D) [7]. In those
estimates, we assumed uniform p-order B-spline basis functions over the entire mesh delivering Cp−1 global regularity of
the solution. The direct solver algorithm for IGA delivering Cp−1 global regularity with p-order B-splines is p3 times slower
than the direct solver with p-order polynomial with C0 global regularity, for 2D and 3D problems, and p2 times slower for 1D
problems. Thus, for p = 3, the C2 global continuity problem is 27 timesmore expensive to be solved than the C0 counterpart
in 2D and 3D, which implies that we may need to wait days instead of hours to obtain the solution.

Themain contribution of this paper is to show theoretically and experimentally that the IGA sequential solver limitations
can be overcome to some extent by utilizing sharedmemory GPU implementations. In this paper, we present the derivation
of the computational cost for an ideal sharedmemory parallel direct solver,wherewe assume zero communication costs, and
uniform grids in terms of h (element size) and p (polynomial order of approximation). The computational cost estimations
imply that the ideal IGA shared memory parallel direct solver delivers O(p2 log(N/p)) for 1D problems, O(Np2) for 2D
problems and O(N4/3p2) for 3D problems.

With these results, not only the N dependence is significantly improved by using the shared memory version, but also
the p-dependence, which makes IGA more competitive with respect to traditional C0-FEM when using shared memory
machines. In particular, for p = 3, the C2 global continuity problem becomes only 9 times more expensive to be solved than
the C0 counterpart in 2D and 3D, as opposed to 27 in the sequential version.

The first part of the paper presents estimates of computational costs and scalability for any shared memory implemen-
tation of multi-frontal IGA solvers. The second part of the paper describes an implementation of the multi-frontal algorithm
for graphics processors. The code is presented, its performance tested for several GPUs and the results are used for verifying
the estimates derived in the first part. Among other things, this combination between theoretical and numerical results en-
ables to show that the leading term (scalability) of our solver is not destroyed by implementation/architectural issues such
as memory access. Notice that we are not assuming that the cost of memory access is zero, but rather that it is of lower
(or equal) order that the number of floating point operations, which ultimately determines the scalability of the solver, as
shown by the numerical results.

In some recent papers [36,37], the influence on execution time of the implementation factors, such as processor occu-
pancy, thread synchronization, and organization of memory accesses is analyzed. However, in such a complex algorithm
as the one presented here, a detailed analysis of memory access, synchronization, organization of memory accesses, etc. is
extremely difficult to perform, and it is out of the scope of this paper. Rather, numerical results show that the theoretical
scalability is indeed achievable in practice, thus, showing that other factors (including memory access) will not destroy the
predicted scalability of the solver.

The theoretical computational cost estimates are comparedwith our parallel sharedmemory implementation.We target
our solver NVIDIA’s GPU architecture, which is a complex shared memory architecture. We tested our implementations on
a GeForce GTX 560 Ti device with 8 multiprocessors, each one equipped with 48 cores. As well as on NVIDIA Tesla C2070
device, which has 14 multiprocessors with 32 CUDA cores per multiprocessor. We also performed tests for the 2D solver on
a GeForce GTX 780 graphic card equipped with 3 gigabytes of memory and 2304 cores.

For the description of a B-spline basedmulti-frontal solver algorithm for 1D problems, we refer to [38]. The 1D IGA solver
is similar to those used in finite differencemethods [39]. For a detailed description of the B-spline basedmulti-frontal solver
for 2D problems, we refer to [40].

The structure of the paper is the following. We start with the definition of our model problem in Section 2. Section 3
describes the basics of the isogeometric analysis using B-splines. Section 4 introduces the multi-frontal solvers algorithm
for IGA. Section 5 presents the computational cost andmemory usage estimates for the 1D, 2D, and 3Dmulti-frontal shared-
memory parallel, direct solver algorithm. In Section 6, we describe the technical details related to the implementation of the
1D and 2D multi-frontal solver. Section 7 presents the numerical results for 1D and 2D models as well as a short discussion
on the limitations of the 3D implementation. Finally, Section 8 depicts the main conclusions of this work and possible lines
of research for the future.

2. Model problem

In this section, we present our model problem. We focus on the 2D conductive media equation

∇ · σ∇u = ∇ · Jimp, (1)
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