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a b s t r a c t

The pattern of some real phenomenon can be described by compartmental in-series
models. Nevertheless, most of these processes are characterized by their variability, which
produces that the exact values of the model parameters are uncertain, although they can
be bounded by intervals.

The aimof this paper is to compute tight solution envelopes that guarantee the inclusion
of all possible behaviors of such processes. Currentmethods, such asmonotonicity analysis,
enable us to obtain guaranteed solution envelopes. However, if the model includes non-
monotone compartments or parameters, the computation of solution envelopes may
produce a significant overestimation.

Our proposal consists of performing a change of variables in which the output is
unaltered, and the model obtained is monotone with respect to the uncertain parameters.
The monotonicity of the new system allows us to compute the output bounds for
the original system without overestimation. These model transformations have been
developed for linear and non-linear systems. Furthermore, if the conditions are not
completely satisfied, a novel method to compute tight solution envelopes is proposed. The
methods exposed in this paper have been applied to compute tight solution envelopes for
two different models: a linear system for glucose modeling and a non-linear system for an
epidemiological model.

Crown Copyright© 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Compartmental systems have been widely used to simulate processes from many different real situations emerging
from biology, economics, engineering, medicine, human sciences and many other research fields. When studying a real
process with a mathematical system, there is always some mismatch between the model and reality, caused because
mathematical models are usually a simplified version of the actual processes. Furthermore, a common characteristic of
any real phenomenon is variability, leading to parametric uncertainty. Therefore, the exact values for the initial conditions
and model parameters are unknown, although they can be bounded by intervals. While there is a single possible behavior
for a model with constant parameters, parametric uncertainty produces a set of different possible solutions. Hence, the
computation of solution envelopes acquires importance.

Monte Carlo approaches have been used to implement these kinds of systems. They consist in performing a large
number of different simulations by the variation of the parameter values [1]. These methods have been widely used to deal
with uncertainty due to their easy computation. However, the computational cost of Monte Carlo approaches increases
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proportionally to the number of simulations executed and, moreover, they never guarantee that the bounds obtained
include all the possible solutions, independently to the number of simulations [2]. This inclusion guarantee is needed for
error-bounded parametric identification and constraint-satisfaction problems.

Trajectory-based approaches have been also applied to obtain solution envelopes [3–5]. Compared with Monte Carlo
simulations, monotonicity analysis guarantees that the actual response is inside the envelopes. However, if the model
analyzed includes any non-monotone state or parameter, the computation of solution envelopes may produce a significant
overestimation. If the overestimation is high, it could not be useful from a practical point of view, for instance, in an insulin
therapy for diabetes patients [6].

This work is an extension of the paper [7], which aims to compute tight solution envelopes for compartmental in-series
models under parametric uncertainty. The solution envelopes computed must guarantee the inclusion of all possible
solutions and minimize the overestimation. The proposal consists in performing a change of variables of the original model
to obtain a monotone system with respect to its states and parameters, and keeping the output unaltered. As all the states
and parameters of the new model are monotone, output bounds can be computed without overestimation. In [7], these
model transformations were formulated in a lemma for bidirectional chains. In this work, we propose an additional lemma
for unidirectional chains that requires fewer conditions. Furthermore, when the system does not completely satisfy the
lemma conditions, we propose a new method to compute tight solution envelopes that consists in the application of an
upper and a lower bounding model.

This work has been organized as follows: In Section 2, uncertain systems are introduced. In Section 3, compartmental
in-series models are presented. In Section 4, several newmethods are proposed for the analysis of the systemmonotonicity
with respect to the parameters. In Section 5, a novel technique is proposed for near-monotone systems. In Section 6, the
proposed methods are applied to compute the output bounds for linear and non-linear models. Finally, Section 7 outlines
the conclusions of this study.

2. Uncertain systems

Continuous-time compartmental systems are described by an initial-value problem (IVP):

ẋ(t, p) = f (t, x, p, u), x(t0) = x0,
x ∈ Rn, t ∈ R, p ∈ Rnp , u ∈ Rn (1)

where f is the vector function with components fi, x is the state vector, p is the parameter vector, np is the number of
parameters, and u is the input vector. The solution of (1) is denoted by x(t; t0, x0, p, u).

As parametric uncertainty is considered, initial conditions and parameter values are unknown, but they can be bounded
by intervals. Representing intervals in bold, interval vectors p,u and x0 include all possible values for the parameters p,
for the input vector u and for the initial conditions x0 of the model, respectively. The set of possible solutions derived from
parametric uncertainty is denoted by x(t; t0, x0, p,u):

x(t; t0, x0, p,u) = {x(t; t0, x0, p, u) | x0 ∈ x0, p ∈ p, u ∈ u}.

The computation of solution envelopes plays a key role in the simulation of systems under parametric uncertainty. Such
a computation can be performed by one-step-ahead iteration based on previous approximations of a set of point-wise
trajectories generated by the selection of particular values of the parameters p ∈ p, the input vector u ∈ u and the initial
conditions x0 ∈ x0 by using heuristics such as a monotonicity analysis of the system [8].

Monotone systems have very robust dynamical characteristics, since they respond to perturbations in a predictable way.
The interconnection of monotone systems may be studied in an analytical way [9], by considering a flow x(t) = φ(x0, t). A
system is monotone with respect to the states, or simply monotone, if x0 ≼ y0 ⇒ φ(x0, t) ≼ φ(y0, t) for all t ≥ 0, where
≼ is a given order relation. Cooperative systems form a class of monotone dynamical systems [4] in which

∂ fi
∂xj

≥ 0, for all i ≠ j, t ≥ 0.

An upper boundingmodel and a lower boundingmodel are computed to obtain solution envelopes for the originalmodel.
The cooperative states take their upper (lower) bound value in an upper (lower) bounding model, while the monotone but
non-cooperative states, known as competitive states, take their lower (upper) bound value in an upper (lower) bounding
model. Nevertheless, in both cases non-monotone states have to be computed as intervals that produce a significant
overestimation in the computation of solution envelopes.

The monotonicity of the system with respect to the parameters of the model can be analyzed by considering the
parameters as system states in an extended model [3], that is, by performing a monotonicity analysis of a new system
with n + np states given by:

ẋ1(t) = f1(t, x1(t), x2(t), . . . , xn(t), p1(t), p2(t), . . . , u1(t))
...

ẋn(t) = fn(t, x1(t), x2(t), . . . , xn(t), p1(t), p2(t), . . . , un(t))
ṗi(t) = 0 ∀i ∈ {1, . . . , np}.

(2)
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