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a b s t r a c t

A new method, the characteristic finite element method (CFEM), was developed to simulate solute
transport in a cross-fracture. The solution of this mathematical model for solute transport considered
that the contribution of convection and dispersion terms was deduced using the single-step, trace-back
method and routine finite element method (FEM). Also, experimental models were designed to verify the
reliability and validity of the CFEM. Results showed that experimental data from a single fracture model
agreed with numerical simulations obtained from the use of the CFEM. However, routine FEM caused
numerical oscillation and dispersion during the calculation of solute concentration. Furthermore, in this
cross-fracture model, CFEM simulation results predicted that the arrival time of concentration peak
values decreased with increasing flux. Also, the second concentration peak value was obvious with the
decrease of flux, which may have resulted from the convergence of solute concentrations from main, and
branch, fractures.
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1. Introduction

Simulation methods of solute transport in cross-fractures
include analytical and numerical schemes. For example, Park and
Kang (1999) provided an analytical solution for solute transport
in 2-D perpendicular fractures; however, their method can only be
applied to simple boundary conditions. In fact, fracture distribution
and geometric characteristics are considerably more complex
compared to fractured rocks matrices. It is difficult to deduce an
analytical solution to the problem of solute transport in cross-
fracture or in a fracture network. Therefore, a numerical scheme
is usually employed to simulate the behaviour of cross-fractures.
Zhang et al. (2008) used FEM to solve the Navier-Stokes equation
in a cross-fracture. Also, a complex pipe networkmodel was used to
simulate its hydraulic and migration properties.

Except for these routine numerical methods, some new, or
modified, schemes were proposed to solve mathematical models of
solute transport. For example, Guo et al. (2009) proposed a new

characteristic-based finite volume scheme which combined
reconstruction and the characteristics of a central weighted
essentially non-oscillatory flow so as to simulate dam-break prob-
lems. Fracture boundary extractionwas developed by Tan and Zhou
(2008) and Tan et al. (2009) using a Gaussian template and canny
boundary detection based on collected digital images of natural
fractures. An Eulerian-Lagrangian approach, with particle tracking
for groundwater flow analysis, was used to handle vertical flow
under variably saturated conditions (Gennady et al., 1998; Zhang
et al., 2008); however, it did not consider solute transport. Also,
the rough fracture surface and the distribution of fracture apertures
were simulated by Wang and Zhou (2004) based on fractal theory.
Seol et al. (2003) investigated fracture-matrix systems for a 2-D
parallel plate and considered the influence of different degrees of
saturation on the solute transport therein. Fracture-matrix in-
teractions were simulated by Yu et al. (2004) using a physical
approach. Furthermore, stochastic schemes have been applied to
the simulation of solute transport in fractures (Bodin et al., 2007; He
et al., 2007).

To avoid numerical oscillation and dispersion using routine FEM
during the calculation of solute concentrations, a CFEM scheme has
been developed to simulate contaminant migration in fractures.
Also, experiments were established to verify the validity and
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reliability of the method. Furthermore, the sensitivity of flux
through the fractures to solute concentration was analysed to
assess the influence of a branch fracture on the main fracture.

2. CFEM schemes

This CFEM was developed on the basis of the FEM. It can
simulate groundwater in fractured rocks using a continuum me-
dium model (Zhou, 2003) and has been applied and verified in
many major hydropower engineering projects in China, such as the
Xiluodu hydropower station, the Three Gorges dam project, at
Longtan hydropower station, and on the Huizhou pumped-storage
power station (Huang et al., 2013).

The control equation of solute transport in the fractured me-
dium can be described by

Rd
vC
vt

¼ V$ðD$VC � uCÞ � lRdC þW (1)

where Rd is the retardation factor, C is the solute concentration, t is
time, V is the Hamiltonian differential operator, D is the hydro-
dynamic dispersion coefficient tensor, u is the velocity of ground-
water flow, l is the radioactivity decay constant, and W represents
the sources and sinks of the solute mass.

The hydro-dynamical derivative, D/Dt, is defined as

D
Dt

¼ v

vt
þ u$V

Rd
(2)

So, Eq. (1) can be

Rd
DC
Dt

¼ V$ðD$VCÞ � fC þW (3)

where,

f ¼ V$uþ lRd (4)

It is noted that the concentration, C, in Eq. (3) does not represent
the spatial concentration at a point, but instead denotes the con-
centration of solutewith velocity u/Rd. Therefore, the solution of Eq.
(1) is divided into two parts which consisted of the contributions
from its convection and dispersion terms. For simplicity, the 2-D
solution will be deduced to demonstrate how to solve Eq. (3) us-
ing the CFEM.

2.1. Characteristic solution of convection term

Eq. (2) can be solved using the characteristic curve method; the
characteristic equation is expressed by Eq. (5):

dX
dt

¼ u
Rd

¼ uk (5)

If each node were considered to be a kinetic particle, and the
direction of movement thereof was in opposition of that of the
groundwater flow, it may be assumed that there exists an imagi-
nary particle for each node. Such a particle will move to point P(xi,
yi) under the action of convection after time, Dt. The situation is
expressed by Eq. (6):8>>>>>>><>>>>>>>:

xki ¼ xkþ1
i �

Zkþ1

k

ukxdt

yki ¼ ykþ1
i �

Zkþ1

k

ukydt

(6)

where xkþ1
i and ykþ1

i are the coordinates of particle i at tkþ1, ukx and
uky represent the velocity component of particle i along the x- and y-
directions, respectively. So, the location of particle i at tk can be
tracked using the location of particle i at tkþ1, which is called the
single step trace-back method (Fig. 1). The second term on the
right-hand side of Eq. (6) is calculated by mean value theorem,
therefore:8>>>>><>>>>>:
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i �
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(7)

If the location of particle i at tk has been determined by Eq. (7),
the contribution of convection term, Ck

i , can be calculated by
interpolation across each element, that is

Ck
i z

XNN
i¼1

4i

�
xki ; y

k
i

�
Ck�1
i (8)

where NN is the number of nodes for an element, 4 is the basic
function.

2.2. Solution of dispersion term by FEM

According to the Galerkin method, Eq. (3) may be expressed as

RR
U

�
Rd

DC
Dt

� V$ðD$VCÞ þ fC �W
�
4idxdy ¼ 0 ði ¼ 1;2;/;NPÞ

(9)

where,U is a domain, and NP is the total number of nodes. Based on
the FEM, the approximation solution for concentration, eC, is given
by

eCzXNN
i¼1

4iCi (10)

Substituting Eq. (10) into Eq. (9), Eq. (9) could be rewritten as

RR
U

"
Rd

DeC
Dt

�V$
�
D$VeC�þ f eC �W

#
4idxdy ¼ 0 ði ¼ 1;2;/;NPÞ

(11)

The two ranks partial derivative of Eq. (11) can be solved using
Green’s formula, and DeC=Dt can be approximated by the difference,
that is

Figure 1. Sketch map of the single step trace-back method.
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