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a b s t r a c t

Learning incorporates a broad range of complex procedures. Machine learning (ML) is a subdivision of
artificial intelligence based on the biological learning process. The ML approach deals with the design of
algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-
to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural
networks, support vector machines, self-organizing map, decision trees, random forests, case-based
reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regres-
sion or classification. The modeling capabilities of the ML-based methods have resulted in their extensive
applications in science and engineering. Herein, the role of ML as an effective approach for solving
problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML
techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore,
nonparametric regression and classification illustrative examples are presented to demonstrate the ef-
ficiency of ML for tackling the geosciences and remote sensing problems.
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1. Introduction

Machine learning (ML) is an effective empirical approach for both
regression and/or classification (supervised or unsupervised) of
nonlinear systems. Such systems can be massively multivariate
involving a few or literally thousands of variables. In ML, a compre-
hensive ‘training dataset’ of examples is constructed covering as
much of the systemparameter space as possible. Typically, a random
subset of the data is put aside for a completely independent valida-
tion.ML is ideal for addressing those problemswhere our theoretical
knowledge is still incomplete but for which we do have a significant
number of observations and other data. In an ideal world, if we had
complete theoretical understanding, ML would be superfluous.

ML has proven useful for a very large number of applications in
many parts of the earth system (land, ocean, and atmosphere) and
beyond, from retrieval algorithms, crop disease detection, new
product creation, bias correction and code acceleration (e.g. Yi and
Prybutok, 1996; Atkinson and Tatnall, 1997; Carpenter et al., 1997;

Lary et al., 2004, 2009; Brown et al. 2008; Azamathulla, 2012;
Zahabiyoun et al., 2013; Madadi et al., 2015). The types of the ML
algorithms commonly used are artificial neural networks (ANN),
support vector machines (SVM), self-organizing map (SOM), deci-
sion trees (DT), ensemble methods such as random forests, case-
based reasoning, neuro-fuzzy (NF), genetic algorithm (GA), multi-
variate adaptive regression splines (MARS), etc (e.g., Shahin et al.,
2001; Shahin and Jaksa, 2005; Das and Basudhar, 2008; Samui,
2008a,b; 2012; Azamathulla and Wu, 2011; Azamathulla et al.,
2011, 2012; Garg et al., 2014a,b,c). The ML-based methods have
been widely applied to the science and engineering problems for
near two decades. This is while the application of these techniques
in the geosciences and remote sensing area is fairly new and
limited. Herein, a number of relevant and documented applications
of ML will be summarized. The unique features of some of the ML
techniques for dealing with the geosciences and remote sensing
problems will be reviewed. Moreover, two very different but
complementary illustrative examples are presented: one using
multivariate nonlinear nonparametric regression, and the other
using multivariate nonlinear unsupervised classification. For these
two illustrative cases, we will start with the scientific motivation
that makes clear the real need for ML and then demonstrate how
ML addresses this need.
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2. Overview of ML applications in geosciences and remote
sensing

The ML algorithms are “universal approximators”. That is, they
learn the underlying behavior of a system from a set of training
data. Another interesting feature of theML-based techniques is that
they do not need a prior knowledge about the nature of the re-
lationships between the data. The application of ML may be cate-
gorized into three areas (Lary, 2010):

(1) The system’s deterministic model is computationally expensive
and ML can be used as a code accelerator tool.

(2) There is no deterministic model but an empirical ML-based
model can be derived using the existing data.

(3) Classification problems.

As mentioned before, ML includes a variety of algorithms ANN,
SVM, SOM, and DT. Over the last decade, there has been consider-
able progress in developing ML-based methodologies for many of
Earth Science applications (Lary, 2010). Some of these studies have
received special recognition as a NASA Aura Science highlight (Lary
et al., 2007) and commendation from the NASA MODIS instrument
team (Lary et al., 2009). ANN and SVM are themost commonly used
ML techniques for dealing with geoscience problems. A compre-
hensive review of application of ANN and SVM in geoscience and
remote sensing can be found in Lary (2010). Also, Nikravesh (2007)
presented an inclusive review study of the application of neuro-
computing, fuzzy logic and evolutionary computing in geo-
sciences and oil exploration. That study also covers the successful
application of hybrid methodologies such as NF, neural-genetic,
fuzzy-genetic and neural-fuzzy-genetic in the field. Nikravesh
(2007) discussed the major impact of these techniques for tack-
ling problems in geophysical, geological and reservoir engineering
(e.g., intelligent reservoir characterization and exploration, seismic
data processing, and characterization, well logging, reservoir
mapping, etc.).

Among the main subsets of ML, applications of genetic pro-
gramming (GP) (Koza, 1992) in the geoscience and remote sensing
domain are very new and restricted to a few areas. Despite the good
performance of ANNs, SVM and many of the other ML methods,
they are considered as black-box models. That is, they are not
capable of generating practical prediction equations. GP is consid-
ered as an efficient approach to deal with this issue. GP uses the
principle of Darwinian natural selection to generate computer
programs for solving a problem. In fact, GP is a specialization of GA
where the encoded solutions (individuals) are computer programs
rather than binary strings (Alavi and Gandomi, 2011). A notable
feature of GP and its variants is that they can produce prediction
equations without a need to pre-define the form of the existing
relationship (Alavi et al., 2010; Alavi and Gandomi, 2011; Alavi et al.,
2011a; Gandomi and Alavi, 2011). Herein, we present an overview
of a number of relevant and recent applications of GP in the field.
The majority of applications of GP focus on the behavioral charac-
terization of rock mass. The other few studies use GP as a tool for
interpreting the remote sensing data. It is worth mentioning that
there are some other studies mainly on the applicability of GP for
analyzing geotechnical engineering problems such as liquefaction
phenomenon, ground motion parameters, or ground movement
patterns (e.g., Javadi et al., 2006; Shuhua et al., 2006; Lia et al.,
2007; Cabalar and Cevik, 2009; Alavi et al., 2011b; Gandomi et al.,
2011; Alavi and Gandomi, 2012; Gandomi and Alavi, 2013).

As mentioned before, most of the GP-based studies focus on
estimating the properties of rock. Perhaps, one of the pioneer
studies in the field was done by Baykasoglu et al. (2008). They
applied GP-based approaches to the strength prediction of

limestone. Different variants of GP, called multi expression pro-
gramming (MEP), gene expression programming (GEP) and linear
genetic programming (LGP) to the uniaxial compressive strength
(UCS) and tensile strength prediction of chalky and clayey soft
limestone. The models were developed using experimental data.
The models had a good accuracy with determination coefficient
(R2) equal to 0.76 and 0.95 for tensile strength and UCS, respec-
tively. Beiki et al. (2010) developed new models to determine the
deformation modulus of rock masses using GP. Several parameters
were used as the predictor variables such asmodulus of elasticity of
intact rock (Ei), uniaxial compressive strength (UCS), rock mass
quality designation (RQD), the number of joint per meter (J/m),
porosity, dry density, and geological strength index (GSI). Beiki et al.
(2010) also found that the GP models give higher predictions over
existing empirical models. Recently, Karakus (2011) employed GP to
analyze laboratory strength and elasticity modulus data for some
granitic rocks. Uniaxial compressive strength (sc), tensile strength
(st) and elasticity modulus (E) were formulated in terms of total
porosity (n), sonic velocity (Vp), point load index (Is) and Schmidt
Hammer values (SH). The results clearly indicated that GP is a po-
tential tool for predicting the elasticity modulus and the strength of
granitic rocks.

Rock mass modulus of deformation (Em) plays a critical role in
designing many structures on rock. Ravandi et al. (2013) performed
a back analysis calculation to derive an equation for estimation of
Em using GP. The model was developed using a database of 40,960
datasets, including vertical stress (rz), horizontal to vertical stresses
ratio (k), Poisson’s ratio (m), radius of circular tunnel (r) and wall
displacement of circular tunnel on the horizontal diameter (d). The
computer program (CP) generated by GP had a good accuracy with
a correlation coefficient equal to 0.97. More recently, Ozbek et al.
(2013) proposed models to estimate the UCS of rocks with
different characteristics using a GP branch, i.e., GEP. They have
considered five different types of rocks including basalt and
ignimbrite (black, yellow, gray, brown) were prepared. UCS was
formulated in terms of effective porosity (n), water absorption by
weight (wA), and unit weight (g). It was shown that GP can be used
for estimating the UCS of rocks successfully.

The ML-based techniques are increasingly used for interpreting
the remote sensing images (RSIs). Conversely from the other ML
methods, there are few GP-based studies in the field of remote
sensing technology. Some typical examples are estimation of the
typhoon rainfall over ocean using multi-variable meteorological
satellite data (Chen et al., 2011), monitoring reservoir water quality
using remote sensing images (Chen, 2003), mapping of base-metal
deposits (Lewkowski et al., 2010), image thresholding for landslide
detection (Rosin and Hervas, 2002), and soil moisture distribution
analysis (Makkeasorn et al., 2006). As good examples in this
context, let us consider the studies done by Makkeasorn et al.
(2009) and dos Santos et al. (2010). RSIs are widely used as valu-
able tools in different real world applications. In the context of
agribusiness applications, a major challenge is recognition of crop
type regions. To cope with this issue, dos Santos et al. (2010) pro-
posed a newGP-based approach for automatic recognition of coffee
crops in RSIs. They combined texture and spectral information
encoded by image descriptors. Fig. 1 shows the steps of the pro-
posed classification process. As it is seen, this approach can be
divided into two main phases: (1) the image description and (2)
image classification. The first phase including the Step 1 to 3 is
focused on the image content characterization. The remaining 4
steps belong to the image classification process. GP has been used
by dos Santos et al. (2010) to identify relevant partitions by
combining the similarities provided by descriptors. Later, dos
Santos et al. (2010) proved that their GP-based method yields
slightly better results than the traditional MaxVer approach.
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