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Prediction of the residual strength of clay using functional networks
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a b s t r a c t

Landslides are common natural hazards occurring in most parts of the world and have considerable
adverse economic effects. Residual shear strength of clay is one of the most important factors in the
determination of stability of slopes or landslides. This effect is more pronounced in sensitive clays which
show large changes in shear strength from peak to residual states. This study analyses the prediction of
the residual strength of clay based on a new prediction model, functional networks (FN) using data
available in the literature. The performance of FN was compared with support vector machine (SVM) and
artificial neural network (ANN) based on statistical parameters like correlation coefficient (R), Nash–
Sutcliff coefficient of efficiency (E), absolute average error (AAE), maximum average error (MAE) and root
mean square error (RMSE). Based on R and E parameters, FN is found to be a better prediction tool than
ANN for the given data. However, the R and E values for FN are less than SVM. A prediction equation is
presented that can be used by practicing geotechnical engineers. A sensitivity analysis is carried out to
ascertain the importance of various inputs in the prediction of the output.
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1. Introduction

Stability of natural slopes or landslides depends upon the shear
strength parameters of clay, which varies significantly between the
peak and residual states. At residual strength, due to remoulding,
clay exhibits negligible cohesion and a decreased value of friction
angle as compared to the peak state. Right from the early studies,
residual strength has been associated with both reactivated land-
slides and first-time slope failures in terms of residual friction angle
(fr).

Skempton (1964) was the first to study the effect of drained
residual shear strength of soil for stability analysis of reactivated
landslides and suggested that the decrease of shear strength is
partly due to changes in orientation of clay particles upon unidi-
rectional shearing. Kenney (1967) reported the effect of mineral-
ogical composition of soils on their residual strength. Based on an
analysis of 99 cases of landslide failure in 36 types of soft clays, stiff
clays and clay shales, Mesri and Shahien (2003) observed that re-
sidual strength also develops in first-time slope failures.

Several attempts have been made in the past to correlate the
residual friction angle of soils and their index properties such as
Atterberg limits and clay fraction (CF). Skempton (1964) related the
residual friction angle (fr) value with the clay fraction. Many re-
searchers (Voight, 1973; Kanji and Wolle, 1977; Bucher, 1975;
Vaughan and Walbancke, 1975; Seycek, 1978; Vaughan et al., 1978;
Fleischer and Scheffler, 1979; Lupini et al., 1981) postulated re-
lationships between fr and plasticity index (PI). Relationships be-
tween fr and liquid limit (LL) were also proposed by Jamiolkowski
and Pasqualini (1976), Cancelli (1977), Mesri and Cepeda-Diaz
(1986), Stark and Eid (1994) and Stark et al. (2005). For sedimen-
tary soil, Stark and Eid (1994) observed that the type of minerals
and percent of clay governs the value of fr. Using LL as an indicator
of clay mineral, they proposed correlations of fr with LL for various
ranges of CF. Wesley (2003) observed that, most of the soil above
the A-line have the fr < 10�, while those below the A-line have
higher values of fr. A good relationship was found between fr and
deviation from the A-line (DPI) for soils with LL > 50. The DPI is
denoted as

DPI ¼ PI� 0:73� ðLL � 20Þ (1)

Based on direct shear test results on simulated soilerock mix-
tures that were developed by mixing kaolinite clay with sand,
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Vallejo and Zhou (1994) indicated that the shear strength of the
whole mixture was governed by the concentration of sand in the
mixture. For sand content <50%, the shear strength was influenced
by clay. For sand concentration between 50 and 80%, the shear
strength was provided partly by the shear strength of kaolin and
partly by the frictional resistance between sand grains.

Based on an experiment on 80 specimens, Tiwari and Marui
(2005) presented a triangular correlation chart to calculate fr
based on mineralogical composition of soils. The chart provided
correlation of fr with the liquid limit, the plasticity index, the clay
fraction, the specific surface area and the proportion of the clay
mineral smectite. This model gave good results for the specimen
tested by them, but failed to correctly predict the values for 53
other samples tested by other researchers.

Wen et al. (2007) examined the residual strength of soils from
the slip zones of about 170 landslides in the Three Gorges Project
(TGP) area, China, and concluded that clay content and Atterberg
limits could be used to estimate the residual strength of soils finer
than 2 mm, but they are not appropriate for the evaluation of re-
sidual strength of soils containing a considerable amount of gravel-
sized particles.

Studies done by Kaya and Kwong (2007) on soil properties of
some active landslides in Hawaii showed a poor correlation be-
tween soil index properties and fr for colluvial soils, which are rich
in an amorphous phase. Another study by Yanrong (2009) on slip
zones of large landslides in the Three Gorges Project, China
observed Atterberg limits, particle size distribution, normal stress,
particle shape and shearing rate as the most influential factors
affecting residual shear strength of composite soil. Thus the pre-
vious studies suggested that fr is affected by a number of index
properties. But most of the relationships cited earlier are in the
form of graphs and are not easy to use by geotechnical engineers in
practice.

Nowadays Artificial Intelligence (AI) techniques like artificial
neural network (ANN), support vector machine (SVM), and genetic
programming (GP) are being used as alternate techniques to sta-
tistical methods in different fields of science and technology.
Yaghouby and Ayatollahi (2009) used SVM for multi-classification
of cardiac arrhythmias into five classes with an accuracy of
99.78%. Yaghouby et al. (2009) used heart rate variability (HRV)
signal to classify the cardiac arrhythmias into four classes using
ANN analysis and found that it was very efficient with 100% accu-
racy. The use of ANN has been also found to be efficient as a PID
controller (Dong et al., 2014). However, GP was found to be more
efficient compared to radial basis function (RBF) neural network in
the automatic detection of atrial fibrillation based on HRV signals
(Yaghouby et al., 2010). AI techniques have been found to be better
prediction tools for geoscience problems than conventional tech-
niques (Goh, 2002; Kerh and Chu, 2002). Kerh and Chu (2002)
observed that for prediction of peak ground acceleration, ANN
basedmodel with strongmotion has better prediction performance
compared to conventional nonlinear regression models. Similarly,
Goh (2002) reported that for liquefaction susceptibility analysis of
ground using in-situ data, ANN based model is more efficient
compared to available empirical models. Das (2013) presented a
comprehensive review of the successful application of ANN in
different geotechnical engineering problems.

Das and Basudhar (2008) used artificial neural network (ANN)
modelling to predict the fr of clay, but their study was limited to
tropical soil of a specific region only. Das et al. (2011) provided an
equation for the calculation of fr of soil based on their analysis of
data using ANN and SVM.

However, ANN has poor generalization, attributed to attainment
of local minima during training and needs iterative learning steps to
obtain better learning performances. SVM has better generalization

compared to ANN, but the parameters (C) and insensitive loss
function ( 3) need to be fine-tuned by the user. Moreover, these
techniques will not produce a comprehensive model equation and
are also called as ‘black box’ system (Giustolisi et al., 2007).

Recently, a new prediction method, functional network (FN),
which is based upon the structure of the physical world has been
used inmany fields of science and engineering including petroleum
engineering (El-Sebakhy et al., 2007), signal processing, pattern
recognition, function approximations (Castillo et al., 1999), real-
time flood forecasting, science, bioinformatics, medicine (El-
Sebakhy et al., 2006), mining, and structural engineering
(Rajasekaran, 2004). FN was introduced by Castillo (Castillo, 1998;
Castillo et al., 2000a), Gomez (Castillo and Ruiz-Cobo, 1992), and
Castillo et al. (Castillo et al., 1998, 2000b) as a powerful alternative
to ANN.

FN as a new modelling scheme has been used in solving both
prediction and classification problems. Hence, in the present study
an attempt has been made to predict the residual friction of soil
using FN based on a set of index properties including LL, PI, CF and
DPI. The data set used for the study is the same as used by Das et al.
(2011). Functional Networks have not been applied to geotechnical
engineering issues to the best of the knowledge of the authors. The
following section briefly describes the concepts of FN. The results
from FN have been compared with the results from ANN and SVM
as obtained by Das et al. (2011).

2. Functional networks

FN is a recently introduced extension of neural networks. In FN,
the network’s initial topology is derived based on modelling of the
properties of the real world, i.e. the domain knowledge of the
problem, whereas in ANN, the number of hidden layers and neu-
rons in the hidden layer is selected by trial and error until a good fit
to the data is obtained. Once the initial topology is available,
functional equations can be used to arrive at a much simpler to-
pology. FN, thus, eliminates the problem of neural networks being
‘black boxes’ by using both the domain knowledge, i.e., associative,
commutative, distributive etc. and the data knowledge to derive
the topology of the problem. Although FN can deal only with data,
the class of problems where FN are most convenient is the class
where knowledge about both the domain and the data are
available.

FN uses domain knowledge to determine the structure of the
network and data to estimate the unknown neuron functions. In
FN, arbitrary neural functions are allowed and they are initially
assumed to be multiargument and vector valued functions.

2.1. Differences between FN and ANN

The characteristic features of the FN and their respective dif-
ferences from the neural networks can be enumerated as follows:

(1) In FN, the information for selection of topology can be derived
either from the data or from domain knowledge or from
combinations of the two, whereas, in neural networks, only the
data is used.

(2) In FN the functions are learned during the structural learning
and estimated during the parametric learning whereas in
neural networks, the neuron functions are assumed to be fixed
and known and only the weights are learned.

(3) FN can use arbitrary multiargument and vector valued func-
tions, whereas in neural networks they are fixed sigmoidal
functions.

(4) Intermediate layers of units are introduced in functional
network architectures to allow several neuron outputs to be
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