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a b s t r a c t

This paper is devoted to the simulation of floating rigid bodies in free surface flows. For that,
a lattice Boltzmann based model for liquid–gas–solid flows is presented. The approach is
built upon previous work for the simulation of liquid–solid particle suspensions on the
one hand, and on an interface-capturing technique for liquid–gas free surface flows on
the other. The incompressible liquid flow is approximated by a lattice Boltzmann scheme,
while the dynamics of the compressible gas are neglected.We show how the particle model
and the interface capturing technique can be combined by a novel set of dynamic cell
conversion rules.We also evaluate the behaviour of the free surface – particle interaction in
simulations. One test case is the rotational stability of non-spherical rigid bodies floating on
a plane water surface – a classical hydrostatic problem known from naval architecture. We
show the consistency of our method in this kind of flows and obtain convergence towards
the ideal solution for the heeling stability of a floating box.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The lattice Boltzmann method (LBM) has become a popular alternative for complex flow simulations [1]. Its application
to particle suspensions has been propelled in a significant part by the work of Ladd et al. [2,3] and Aidun et al. [4–6]. Based
on the approach of the so-called momentum exchange method, it is possible to compute the hydromechanical stresses on
the surface of fully resolved solid particles directly from the boundary conditions. In this paper, this fluid–solid coupling
approach is extended to liquid–gas free surface flows, i.e., the problem of solid bodies moving freely within such a flow of
two immiscible fluids, where the dynamics of one phase (the gas phase) can be regarded negligible. We use the free surface
model of [7,8] to simulate a liquid phase in interaction with a gas by means of a volume of fluids approach and a special
kinematic free surface boundary condition. Here, the interface of the two phases is assumed sharp enough to bemodeled by
a locally defined non-diffusive boundary layer. This boundary layer is updated dynamically according to the liquid advection
based on a set of cell conversion rules.

This paper proposes a unification of the update rules of the free surfacemodelwith those of the particulate flowmodel. As
described in [9], the resulting scheme allows full freedom of motion of the solid bodies in the flow, which can be calculated
according to rigid body physics. We demonstrate the consistency of the combined liquid–gas–solid method by means of a
simple advection test with a floating object in a stratified free surface channel flow, and discuss the primary sources of error
in the dynamic boundary handling with particles in motion.

We further apply ourmethod to the problem of rotational stability of rigid floating objects. This kind of hydromechanical
problems typically emerges in marine engineering, where the floating stability of offshore structures is of concern [10,11].
This idea of evaluating the simulated floating stability of rigid bodies is inspired by Fekken [12], where it is proposed as a test
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Fig. 1. D3Q19 stencil. The weights are w0 = 1/3 for C, w1, . . . , w6 = 1/18 for W , E,N, S, T , B, and w7, . . . , w18 = 1/36 for TW , TE, TN, TS,NW ,

NE, SW , SE, BW , BE, BN, BS.

case for a Navier–Stokes based simulator originally developed for the estimation of ‘‘green water’’ loads on ship decks [13].
To the best of our knowledge, the only approach to handle similar hydromechanic problems bymeans of lattice Boltzmann is
the one by Janßen [14]. Because of the static nature of these problems, numerical issues arising from hydro-dynamic effects
can be widely discarded, which makes them well-suited for the verification of the force calculations that are involved. In
addition to that they provide a possibility to check the convergence of the simulated liquid–gas–solid systems into a state of
equilibrium.We succeed in showing convergence in simulations, provided that adequate spatial resolutions are chosen. For
the special problemof floating stability of cuboid structures, convergence of the numerical simulations toward the analytical
model is obtained.

2. Method

2.1. Isothermal D3Q19 lattice BGK method

We assume the D3Q19 lattice model for 3-dimensional flows [15–17], with a set of N = 19 discrete lattice velocities c⃗i
(i = 0, . . . ,N − 1). All of the calculations of Section 3 have been done with this model; but the techniques described
in this article are general enough to be applied with other cubic lattice models. For the theoretical considerations in
this section, however, we will often fall back implicitly to the native D2Q9 model, as a 2-dimensional setting simplifies
explanations and figures. The lattice velocities c⃗i (also called lattice directions or lattice links) with their respective weights
wi (i = 0, . . . ,N − 1), as shown in Fig. 1, are (0, 0, 0) for C , (±1, 0, 0), (0, ±1, 0), (0, 0, ±1) for W , E,N, S, T , B, and
(±1, ±1, 0), (0, ±1, ±1), (±1, 0, ±1) for TW , TE, TN, TS,NW ,NE, SW , SE, BW , BE, BN, BS. By i we denote the index of
the lattice velocity c⃗i with c⃗i = −c⃗i. Let sx, sy, sz be positive real numbers that are integer multiples of the spatial resolution
δx. The domain [0, sx] × [0, sy] × [0, sz] is divided into cells, i.e., cubic volumes of length δx, which yields a computation
domain of lx × ly × lz (li := si/δi, i ∈ {x, y, z}), discrete lattice cells. Spatial quantities like sx, sy, sz and δx are commonly
given in a certain unit of length (e.g., metres). However, when dealingwith LBM specific computations, dimensionless lattice
coordinates are used: Spatial coordinates are thus given in the following as multiples of δx. By speaking of a cell (x, y, z),
where x, y and z are positive integer numbers, wemean the lattice cellwith respective volume [x, x+1]×[y, y+1]×[z, z+1]
in the lattice. We refer to the point (x + 0.5, y + 0.5, z + 0.5) as the cell center. For each lattice direction i = 0, . . . ,N − 1
we denote with fi(x⃗, t) the particle distribution function (PDF) of the direction c⃗i in cell x⃗ and of time step t .

The lattice BGK propagation scheme can be derived from the classic Boltzmann equation with the collision operator
substituted by the Bhatnagar Gross Krook (BGK) operator [18–20]. Including an external force term Fi, the lattice BGK (LBGK)
equation reads

fi(x⃗ + δt c⃗i, t + δt) − fi(x⃗, t) = −
1
τ


fi(x⃗, t) + feq,i


ρ(x⃗, t), u⃗(x⃗, t)


− δtFi. (1)

Here, τ is the dimensionless relaxation time and related to the kinematic viscosity ν by τ = (ν +1/2c2s δt)/(c
2
s δt). The lattice

speed of sound cs is a model-dependent constant. In our case, we have cs = 1/
√
3. The equilibrium function is therewith

given as a so-called low Mach number expansion of the Maxwell distribution function,

feq,i(ρ, u⃗) = ρwi
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see, e.g., [20]. Eq. (2) is valid for small flow velocities, where the constraint Ma :=
√
u⃗T u⃗/cs ≪ 1 holds. The external force

term Fi can be used to represent gravitation (expressed as acceleration a⃗) in simulations [21,22], with
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