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a b s t r a c t

The optimal relaxation time of about 0.8090 has been proposed to balance the efficiency,
stability, and accuracy at a given lattice size of numerical simulations with lattice
Boltzmannmethods. The optimal lattice size for a desired Reynolds number can be refined
by reducing the Mach number for incompressible flows. The functioned polylogarithm
polynomials are defined and used to express the lattice Boltzmann equations at different
time scales and to analyze the impact of relaxation times and lattice sizes on truncation
errors. Smaller truncation errors can be achieved when relaxation times are greater than
0.5 and less than 1.0. The steady-state lid-driven cavity flowwas chosen to validate the code
of lattice Boltzmann procedures. The applications of the optimal relaxation parameters
numerically balance the stability, efficiency, and accuracy through Hartmann flow. The
optimal relaxation time can also be used to select the initial lattice size for the channel
flow over a square cylinder with a given Mach number.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The lattice Boltzmann method (LBM) has emerged as a promising alternative to the numerical scheme for high
performance computational fluid dynamics (CFD) in the past twenty years. The numerical approaches based on the
Boltzmann equation cover awide range of the Knudsen number for practical applications. No effort for solving linear systems
of equations is needed. The method is particularly competitive for fluid flow applications with complexities of geometries,
boundaries, and interfacial dynamics [1]. Themost commonly used collision operators are the single relaxation time (SRT) [2]
and the multiple relaxation time (MRT) [3,4].

The LBMs can be applied to physical problems by means of nondimensionalization [5]. When both the physical system
and the lattice system are equivalently scaled, three key dimensionless quantities: lattice size, relaxation time or collision
frequency, and Mach number are yet to be determined for any CFD problems with a given Reynolds number. Different
combinations of the key dimensionless quantitiesmay numerically impact the stability, accuracy, and efficiency of the LBMs.
The optimal relaxation time has been derived to balance the numerical properties. The optimal relaxation parameters are
applicable for both the SRT and the MRT collision operators since no particular assumptions relative to collision operators
have been made during their derivations.

The lattice Boltzmann method, which can be derived from the kinetic theory of gases, evolved from the lattice-gas
automata. The primary variable is a one-particle probability distribution function f (x, e, t). The macroscopic flow variables
such as density, velocity, pressure, temperature, and stress can be expressed as the velocity moments of the one-particle
probability distribution function.

The general transport equation reads

(∂t + e · ∇x + a · ∇e)f (x, e, t) = Q , (1)
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where t is the time, e is the particle velocity, x is the special location, a is the acceleration due to an external force, and Q is a
collision operator. To complete the Boltzmann equation from (1), the collision operator has to be specified. Four assumptions
are made: (a) only binary collisions are taken into consideration, (b) the velocity of a molecule is not correlated to its space
location, (c) the effect of the external force on the collision cross section is neglected, and (d) wall effects are ignored [6].
Under these assumptions, Boltzmann related the collision operator to the one-particle probability distribution function. One
of the most commonly used collision operators is the linearized SRT or BGK collision operator [2]

Q = −
1
τ

[f − f (eq)
], (2)

where τ is a relaxation time.
With the Boltzmann H-theorem, the Maxwell–Boltzmann or equilibrium one-particle probability distribution function

was given by

f (eq)
=

ρ

(2πRT )D/2
exp


−

(e − u)2

2RT


, (3)

where D, R, T , ρ, and u are the dimensions of space, gas constant, temperature, density, and velocities, respectively.
To numerically solve for f given in (1)–(3), the velocity space e is simplified by a finite set of velocity vectors ei, which

is chosen for isotropy. For the D2Q9 model, the discrete velocity vectors can be practically expressed as e0 = (0, 0),
e1 = −e3 = (c, 0), e2 = −e4 = (0, c), e5 = −e7 = (c, c), and e6 = −e8 = (−c, c). The lattice speed c = δx/δt is
the ratio of a lattice spacing δx to a time step δt . The low Mach number expansion of (3) at a constant temperature is given
by [7]

f (eq)
i = ρwi


1 +

3
c2

(ei · u) +
9
2c4

(ei · u)2 −
3
2c2

(u · u)


, (4)

where the weighting factors wi are specifically given by w0 = 4/9, w1 = w2 = w3 = w4 = 1/9, and w5 = w6 = w7 =

w8 = 1/36. The leading moments of the truncated equilibrium distribution function (4) for incompressible flows can be
evaluated as

ρ =

8
i=0

fi =

8
i=0

f (eq)
i , (5)

ρuα =

8
i=1

eiα fi =

8
i=1

eiα f
(eq)
i , (6)

1
3
c2ρδαβ + ρuαuβ =

8
i=1

eiαeiβ f
(eq)
i , (7)

1
3
c2ρ(δαβuγ + δβγ uα + δγαuβ) =

8
i=1

eiαeiβeiγ f
(eq)
i , (8)

where eiα is the projection of ei on α-axis.
In (6) through (8), the summation is taken from 1 to 8 because of a rest particle devised for better computational stability.

For ideal gases, the equation of state relates density ρ to pressure p with the following equation

p = ρRT =
1
3
ρc2. (9)

Eqs. (1) and (2), by introducing the collision frequency ω = 1/τ , can be discretized in space x and time t with the lattice
spacing of δx = eiδt as

fi(x + eiδt, t + δt) − fi(x, t) = −ω[fi(x, t) − f (eq)
i (x, t)]. (10)

This is the lattice Boltzmann equation with the BGK simplification. The lattice BGK model can be solved in two steps:
first by collision and then by streaming. Therefore, the relaxation of local collision and advection of particle distribution
functions evolve from one lattice to another by

fi(x, t + δt) = (1 − ω)fi(x, t) + ωf (eq)
i (x, t), (11)

fi(x + eiδt, t + δt) =fi(x, t + δt), (12)
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