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a b s t r a c t

In order to model the thermal structure of polythermal ice sheets accurately, energy-conserving schemes
and correct tracking of the coldetemperate transition surface (CTS) are necessary. We compare four
different thermodynamics solvers in the ice sheet model SICOPOLIS. Two exist already, namely a two-
layer polythermal scheme (POLY) and a single-phase cold-ice scheme (COLD), while the other two are
newly-implemented, one-layer enthalpy schemes, namely a conventional scheme (ENTC) and a melting-
CTS scheme (ENTM). The comparison uses scenarios of the EISMINT Phase 2 Simplified Geometry Ex-
periments (Payne et al., 2000, J. Glaciol. 46, 227e238). The POLY scheme is used as a reference against
which the performance of the other schemes is tested. Both the COLD scheme and the ENTC scheme fail
to produce a continuous temperature gradient across the CTS, which is explicitly enforced by the ENTM
scheme. ENTM is more precise than ENTC for determining the position of the CTS, while the performance
of both schemes is good for the temperature/water-content profiles in the entire ice column. Therefore,
the one-layer enthalpy schemes ENTC and ENTM are viable, easier implementable alternatives to the
POLY scheme with its need to handle two different numerical domains for cold and temperate ice.

© 2016 Elsevier B.V. and NIPR. All rights reserved.

1. Introduction

Many glaciers and ice sheets are polythermal with disjoint cold
and temperate domains, separated by the coldetemperate transi-
tion surface (CTS) (Blatter and Hutter, 1991). Both the Greenland
and Antarctic ice sheets are Canadian-type polythermal, that is,
they are mainly cold, except for distributed temperate layers at the
base where strain heating is largest and where there is a
geothermal contribution. It is thus important to model the ther-
modynamics of ice sheets correctly by distinguishing both domains
and accounting for the transition conditions between them.

Various methods allow one to model the thermodynamic con-
ditions in ice sheets. Thus far, SICOPOLIS (SImulation COde for
POLythermal Ice Sheets; e.g., Greve, 1997b; Sato and Greve, 2012;
Greve and Herzfeld, 2013; URL www.sicopolis.net) is the only
three-dimensional ice sheet model that employs the polythermal
two-layer scheme. In this method, the temperature and water-
content fields in the two domains, cold and temperate ice, are
computed on separate numerical domains, and the transition

conditions at the CTS are used to track its position.
Inmost older ice sheetmodels (e.g., Huybrechts,1990; Calov and

Hutter, 1996; Payne and Dongelmans, 1997; Ritz et al., 1997), the
cold-ice method was applied by resetting any computed tempera-
tures that exceed the local pressure melting point to the local
pressure melting point. While very simple, this means that energy
is lost, and the water content in the temperate layer as well as the
transition conditions at the CTS are ignored. The cold-ice method
has, however, always been available in SICOPOLIS as an alternative
to the polythermal two-layer method.

Aschwanden et al. (2012) introduced a new, enthalpy-based
approach for ice sheet thermodynamics. In this method, the ther-
modynamic fields of temperature in cold ice and water content in
temperate ice are replaced by one common thermodynamic field,
enthalpy,1 for both domains, and only one common field equation
must be solved. However, the Stefan-type energy- and mass-flux
matching conditions at the CTS, which are important for deter-
mining its position (Greve, 1997a), are not included explicitly in the
formulation of the enthalpy scheme by Aschwanden et al. (2012).
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1 Owing to the incompressibility of ice, the enthalpy is identical to the internal
energy.
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Following the terminology of Blatter and Greve (2015), we refer to it
as the conventional one-layer enthalpy scheme. This scheme has
already been used in a number of ice sheet and glacier models
(Brinkerhoff and Johnson, 2013; Golledge et al., 2013; Seroussi et al.,
2013; Wilson and Flowers, 2013; Gilbert et al., 2014; Kleiner et al.,
2015).

Two different conditions of the CTS must be distinguished. For
melting conditions, cold ice flows across the CTS into the temperate
layer, where water starts to accumulate due to strain heating along
trajectories. The opposite situation, freezing conditions, occurs
further downstream, where temperate ice flows across the CTS into
the cold domain and the accumulated water content freezes out,
releasing latent heat. For melting conditions, the temperature
gradient and the water content are continuous across the CTS,
while for freezing conditions, discontinuities of these quantities
occur (Greve,1997a). Since the CTS tends to be rather steep near the
terminus, only a small area of the CTS is freezing, and therefore, in
results of ice sheet models, freezing conditions usually only occur at
very few isolated grid points (Greve, 1997b).

Kleiner et al. (2015) tested the implementation of the conven-
tional enthalpy scheme for a Canadian-type parallel-sided slab in
one finite-difference and two finite-element ice sheet models (TIM-
FD3, ISSM, COMice). Blatter and Greve (2015) compared the per-
formance of four different versions of the enthalpy scheme for a
parallel-sided slab with a custom-designed finite-difference pro-
gram. Besides the conventional enthalpy scheme, they considered
the two-layer front-tracking enthalpy scheme (an enthalpy version of
the polythermal two-layer schemementioned above), the one-layer
melting-CTS enthalpy scheme and the one-layer freezing-CTS
enthalpy scheme. In the two latter schemes, explicit tracking of
the melting or freezing CTS, based on the respective transition
conditions at the CTS, has been added to the conventional enthalpy
scheme. An important finding of these works was that the con-
ventional one-layer enthalpy scheme can produce correct solutions
for melting conditions at the CTS, provided that the numerical
handling of the discontinuity of the enthalpy diffusivity across the
CTS is done carefully. However, especially for finite-difference
techniques, Blatter and Greve (2015) concluded that it is safer to
use the one-layer melting-CTS enthalpy scheme, which enforces
the transition conditions explicitly. For freezing conditions, the
conventional one-layer enthalpy scheme fails because it cannot
handle the associated discontinuities of the thermodynamic fields,
and it is thus imperative to enforce the transition conditions at the
CTS explicitly, as it is done in the one-layer freezing-CTS enthalpy
scheme.

For this study, in addition to the previously existing polythermal
two-layer and cold-ice schemes, we have implemented the con-
ventional one-layer enthalpy scheme and the one-layer melting-
CTS enthalpy scheme in the SICOPOLIS model. For the reason given
above, freezing conditions are not considered here. We attempt to
test and verify these four schemes in SICOPOLIS, and in particular to
test how the various schemes handle the melting CTS between cold
and temperate ice for Canadian-type polythermal situations in ice
sheets. Based on the results of Blatter and Greve (2015), we
consider the polythermal two-layer scheme to be the most reliable
method and thus use its results as benchmark solutions. In Sections
2 and 3 we give an overview of the theory of ice-sheet thermody-
namics and describe the implementation of the various schemes in
SICOPOLIS. Section 4 gives the set-up of the scenarios derived from
the suite of EISMINT (European Ice Sheet Modeling INiTiative)
Phase 2 Simplified Geometry Experiments (Payne et al., 2000) used
for this study. In Section 5 we discuss the results, focusing on the
simulated thickness of the temperate ice layer. Section 6 concludes
the paper.

2. Outline of ice-sheet thermodynamics

2.1. Standard polythermal thermodynamics

The standard description of the thermodynamics of polythermal
ice masses, for which we follow largely Greve (1997a), is based on
the fields of absolute temperature T in cold ice andwater contentW
in temperate ice. The evolution equation for temperature in cold ice
is given by
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where t denotes time, z the vertical spatial coordinate, v the three-
dimensional velocity vector, r ¼ 910 kg m�3 the ice density, k the
temperature-dependent heat conductivity of cold ice and c the
temperature-dependent heat capacity of cold ice. Also, Q ¼ trðt$DÞ
is the volumetric strain heating, where t is the Cauchy stress tensor,
D the strain-rate tensor, the middle dot (,) denotes tensor
contraction and tr the trace of a tensor. Horizontal diffusion terms
have been neglected, which can be justified by scaling arguments
making use of the shallowness of ice sheets (e.g. Greve and Blatter,
2009).

Similar to Eq. (1), the evolution equation for water content in
temperate ice reads
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(2)

where n is the water diffusivity in temperate ice (assumed to be
constant) and L¼ 3.35� 105 J kg�1 the latent heat of fusion. The
very small terms in the second line of the equation arise from the
fact that the temperature in temperate ice is not constant, but
equal to the melting temperature Tm that depends on the local
pressure p,

TmðpÞ ¼ T0 � bp; (3)

where T0¼ 273.15 K is the reference temperature and
b ¼ 9.8� 10�8 K Pa�1 the Clausius-Clapeyron constant for air-
saturated glacier ice (Hooke, 2005). As in Eq. (1), horizontal diffu-
sion terms have been neglected in the evolution equation (2).

As already mentioned in Sect. 1, for melting conditions at the
CTS, the temperature gradient and the water content must be
continuous across the CTS (Greve, 1997a). If we mark values at the
cold side of the CTS by plus (þ) superscripts, values at the
temperate side by minus (�) superscripts, and denote the normal
unit vector pointing into the cold side by n, this reads

gradTþ$n ¼ gradT�m$n (4)

and

Wþ ¼ W� ¼ 0: (5)

For freezing conditions, the situation is more complicated in
that the temperature gradient and the water content are in general
discontinuous across the CTS (Blatter and Hutter, 1991; Greve,
1997a). However, as already mentioned in Sect. 1, this situation
usually occurs only on very small parts of the CTS, and therefore we
do not consider freezing conditions in this study.

At the ice surface, we prescribe the surface temperature as a
Dirichlet-type boundary condition. At the ice base, three different
cases must be distinguished. For a cold base, the geothermal heat
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