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a b s t r a c t

Linear Least Squares (LLS) problems are particularly difficult to solve because they are

frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS prob-

lems are commonly seen in mathematics and geosciences, where regularization algo-

rithms are employed to seek optimal solutions. For many problems, even with the use of

regularization algorithms it may be impossible to obtain an accurate solution. Riley and

Golub suggested an iterative scheme for solving LLS problems. For the early iteration

algorithm, it is difficult to improve the well-conditioned perturbed matrix and accelerate

the convergence at the same time. Aiming at this problem, self-adaptive iteration algo-

rithm (SAIA) is proposed in this paper for solving severe ill-conditioned LLS problems. The

algorithm is different from other popular algorithms proposed in recent references. It

avoids matrix inverse by using Cholesky decomposition, and tunes the perturbation

parameter according to the rate of residual error decline in the iterative process. Example

shows that the algorithm can greatly reduce iteration times, accelerate the convergence,

and also greatly enhance the computation accuracy.

© 2015, Institute of Seismology, China Earthquake Administration, etc. Production and

hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A linear or linearized model is expressed as

L ¼ AX� V; covðVÞ ¼ s2
0Q; P ¼ Q�1 (1)

where L2Rn is an observation vector contaminated by an error

vector V2Rn with normal distribution of mean zero and

covariance matrix s2
0Q; P is a positive-definite weight matrix;

A2Rn�m is a matrix with full column rank connected to an

unknown vector X2Rm and generally n >m. We are concerned

with the solution of least-squares problems:

min
X2Rm

kAX� Lk (2)

where k,k denotes the Euclidean vector norm, X is the un-

known vector to be solved. If the matrix A is well-conditioned,
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the least-squares solution has the best unbiased estimation to

this over determined system of equation (1) which is given as� ðATPAÞX ¼ ATPL

X ¼ �
ATPA

��1�
ATPL

� (3)

However, ATPA may be a severely ill-conditioned matrix,

thus it cannot be inverted. Problems of this kind are referred to

ill-posed problems. Due to the ill-conditioning of ATPA, these

problems are difficult to solve accurately [1]. Inverting ill-

conditioned large matrices is a challenging problem involved

in a wide range of applications, including inverse problems

and partial differential equations [2]. Global Navigation

Satellite System (GNSS) is a fast, dynamic, high precision

positioning technique that has been attracting more and

more attention in modern geodesy. In the static positioning

of GNSS, the carrier phase ambiguity and other parameters

are set as unknown for solving. A linear observational

equation system for real-time GNSS carrier phase ambiguity

resolution is often severely ill-posed, in the case of poor

satellite geometry [3]. Generally, in order to improve the

precision and reliability of the solution, a long time for GNSS

observing is usually needed. GNSS satellites belong to high

orbit satellite, and the angle velocity is small. If the

observation period is not long enough, the directions of

the receivers to the satellites will see little change, and the

distances between stations and satellites vary little in

the whole observing session. Thus observation equations of

the same satellites and different epochs are almost similar,

so to rapidly determine phase ambiguity is a typical ill-

condition problem.

Linear discrete ill-posed problems are difficult to solve

numerically, because their solution is very sensitive to per-

turbations which may stem from errors in the data, round-off

errors and discretization errors during which introduced the

solution process [4,5]. Severely ill-conditioned matrix invert-

ing problems abound in the geosciences, especially in the data

processing of modern survey. In the numerical algorithm, all

the cases of inappropriate function model or inappropriate

calculating method, a morbid or singular iteration matrix and

so on, will lead to inaccurate solutions. For singular matrix

and ill-posed problems, there are a large number of research

results, such as regularization methods. Among all regulari-

zationmethods, perhaps the best known andmost commonly

used is the TikhonovePhillips method, which was originally

proposed by Tikhonov and Phillips in 1962 and 1963 [6]. It's
possible that the best understood regularization method is

due to Tikhonov [7]. The Tikhonov regularization method is

one of the most popular approaches to determine an

approximation of X. This method replaces the linear system

of equation (2) by a penalized least-squares problem of the

form [8e12]:

min
X2Rm

n
kAX� Lk2 þ mkTXk2

o
(4)

where m > 0 is known as the regularization parameter, T is

some suitably chosen Tikhonov matrix. Ill-posed problems

must be first regularized if one wants to successfully attack

the task of numerically approximating their solutions. It is

often said that the art of applying regularization methods

consist always in maintaining an adequate balance between

accuracy and stability [13]. As to regularizationmethods, there

are three drawbacks: (1) these methods destroy the

equivalence relation of the equation (3); (2) a regularized

solution is well-known to be biased [14]; and (3) to determine

the optimal regularization parameter is rather difficult.

Riley [15] and Golub [16] suggested an iterative scheme for

solving LLS problems, which has advantages as follows: (1) it

makes the perturbed matrix well-conditioned, and improves

the condition number of matrix in the normal equation; (2) it

keeps the equivalence relation of the equation unchanged;

and (3) the iteration can always converge to the optimal

solution theoretically. For these reasons, it has attracted

attention from geodesists in data processing widely. However,

a few problems are found in its practical application in recent

years [17]. The choice of perturbation parameter will greatly

affect the rate of convergence of the iterative method, and

thus one must choose it with great care [16]. The perturbation

parameter chosen should be large enough to make the

perturbed matrix well-conditioned, yet small enough to

ensure that the error
��X� eX�� is small [18]. If the perturbation

parameter increases, the convergence rates turn out to be

low; but if decreased, the ill-posed matrix cannot be improved

to be well-conditioned. For this reason, based on theoretical

analysis and a large number of experiments, a new self-

adaptive iteration algorithm is proposed in this paper.

The contributions of this paper are as follows: (1) a formula

to determine the initial perturbation parameter is given; (2) a

self-adaptive strategy is proposed to determine the tunable

perturbation parameter dynamically; (3) an optimal termina-

tion point is found to stop the iteration. Comparison results of

some experiments indicate that the algorithm can accelerate

the convergence and improve computation accuracy. The rest

of the paper is organized as follows. Section 2 introduces the

algorithm in detail for severe ill-posed problems. Section 3

gives several experiments to demonstrate the superior

performance of the proposed algorithm. The concluding

remarks are outlined in Section 4.

2. Self-adaptive iteration algorithms

2.1. Implementations of regularization

The ill-posed matrix is generally measured by the condi-

tion number of the matrix. If the condition number of ATPA is

very large, that means the matrix is usually ill-posed. In this

case, finding the inverse matrix of ATPA in equation (3) may

have no stable solution. To solve the problem, many

references [8,18e21] employ an algorithm like this

Xm ¼ �
ATPAþ mI

��1�
ATPL

�
(5)

where m is an arbitrary regularization parameter, I denotes

identity matrix. It is obvious that adding mI to the right side of

equation (5) will destroy the equivalence relation in equation

(3). The solution Xm solved by equation (5) is no longer the

same X in equation (3). Another drawback is that the

condition number of ATPA is much more than that of A,

which requires m to be large enough to control the condition

of the matrix [18]. Moreover, it is difficulty to determine an
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