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a b s t r a c t

This paper investigates the use of multidimensional scaling in the evaluation of fractional
system. Several algorithms are analysed based on the time response of the closed loop
system under the action of a reference step input signal. Two alternative performance
indices, based on the time and frequency domains, are tested. The numerical experiments
demonstrate the feasibility of the proposed visualization method.
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1. Introduction

Fractional Calculus (FC) represents the generalization of the classical integer-order differential calculus. FC was triggered
by a question posed in a correspondence between Leibniz and l’Hôpital [1–3]. Nevertheless, FC is currently considered as
an important topic because during the past decades relevant studies emerged in many scientific areas [4–11] motivating an
increasing interest in its application. Due to this fact researchers are paying considerable attention to fractional algorithms,
but the proposed mathematical and computational tools are still far from leading to straightforward and simple results.

Bearing these ideas in mind, this paper studies the application of multidimensional scaling (MDS) visualizing technique
for comparing fractional order systems, and is organized as follows. Section 2 introduces the MDS concepts. Section 3
develops numerical experiments with linear systems under the action of fractional control algorithms. Finally, Section 4
outlines the main conclusions.

2. Multidimensional scaling

MDS is a technique used for visualization information in the perspective of exploring similarities in data [12–19]. MDS
assigns a point to each item in amulti-dimensional space and arranges them in order to reproduce the observed similarities.
Often, instead of similarities are considered dissimilarities, or distances, between the objects. For two or three dimensions
the resulting locations may be displayed in a ‘map’ that can be analysed.

An MDS algorithm starts by defining a measure of similarity (or, alternatively, of distance) and to construct a square
matrix of item to item similarities (or, alternatively, of distances). In classical MDS the matrix is symmetric and its main
diagonal is composed of ‘1’ for similarities (or of ‘0’ for dissimilarities). MDS is a procedure that tries to rearrange objects so
as to arrive at a configuration that best approximates the observed similarities (or distances). For this purpose MDS uses a
functionminimization algorithm that evaluates different configurationswith the goal ofmaximizing the goodness-of-fit. The
most commonmeasure that is used to evaluate howwell a particular configuration reproduces the observed distancematrix
is the raw stress measure defined by S =


dij − f


δij

2 where dij stands for the reproduced distances, given the respective
number of dimensions, and δij represents the input data (i.e., the observed distances). The expression f


δij


indicates a

nonmetric, monotone transformation of the input data. Thus, the smaller the stress value S, the better is the fit between the
reproduced and the observed distance matrices. We can plot S versus the number of dimensions for deciding the ‘best’ one.
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Usually we get a monotonic decreasing plot and we chose the ‘best’ dimension as a compromise between stress reduction
and dimension for the map representation. In practical terms, we chose a low dimension at the region where we have a
significant ‘elbow’ in the stress plot.

We can also plot the reproduced distances, for a particular number of dimensions of the MDS map, against the observed
input data (distances). This scatter plot, referred to as Shepard diagram, shows the distances between points versus the
original dissimilarities. In the Shepard plot, a narrow scatter around a 45° indicates a good fit of the distances to the
dissimilarities, while a large scatter indicates a lack of fit.

3. Analysis of fractional control algorithms

In this section, we apply classical MDS for visualizing the performance of several approximations of fractional control
algorithms [20–22]. For obtaining the discrete time algorithms, that is, for converting expressions from continuous to
discrete time, are often considered the Euler and Tustin expressions:

Hα
0


z−1

=


1
Ts


1 − z−1α

(1)

Hα
1


z−1

=


2
Ts

1 − z−1

1 + z−1

α

(2)

where z and Ts represent the Z-transform variable and controller sampling period, respectively. The Euler expression is,
in fact, a direct result of the Grünwald–Letnikov definition of fractional derivative with the infinitesimal time increment h
replaced simply by the sampling period T . Weighting H0 and H1 by the factors p and 1 − p, leads to the arithmetic average:
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The so called Al-Alaoui operator corresponds to an interpolation of Hα
0
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
and Hα
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
with weighting factor p =

3
4

[23–25].
In [26]were studied other averages based on the generalizedmean, but in this paper those expressions are not considered

for the sake of simplification.
In order to obtain rational expressions usually are adopted Taylor or Padé expansions of order r , in the neighbourhood

of z = 0, leading to series and fractions of the type:
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Having these ideas in mind [27], we start the MDS method by establishing a first measure of comparison based on the
closed-loop system response to an input step reference signal. Therefore, we define the normalized time correlation index:
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where t denotes time, xl(t) and xr(t) represent the l-th and r-th output signals, and Tw is the timewindow of the calculation.
This expression uses the inner product of vectors and is often denoted as cosine correlation [28].

With this measure we can now implement a matrix C = [clr ] of dimension 29 × 29 that feeds the MDS algorithm when
construct the maps.

During the numerical calculations was adopted a sampling period of T = 0.1 s and a time window of Tw = 100 s.
Our test bed consists of twenty nine systems (see Table 1) with unit feedback subjected to a reference unit step input,

and correspond to combinations of the transfer functions of the fractional control algorithm Gc(s), α = 0.5, and the process
Gp(s) =

1
s2
. In the fractional control algorithms are considered the ideal case Gc(s) = s0.5 (labelled ML as it adopts the

Mittag-Leffler function denoted by Eα(), α > 0) leading to the closed-loop response y(t) = 1 − E0.5

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
, the Taylor

T 0.5
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expansions (labelled as T and P) of order r = {1, . . . , 7} (labelled from 1 up to 7), based on

the Grünwald–Letnikov and Al-Alaoui formulae (labelled as G and A),
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