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A digital elevationmodel (DEM) derived from remote sensing data often suffers from outliers due to various rea-
sons such as the physical limitation of sensors and low contrast of terrain textures. In order to reduce the effect of
outliers on DEM construction, a robust algorithm of multiquadric (MQ) methodology based on M-estimators
(MQ-M) was proposed. MQ-M adopts an adaptive weight function with three-parts. The weight function is
null for large errors, one for small errors and quadric for others. A mathematical surface was employed to com-
paratively analyze the robustness of MQ-M, and its performance was compared with those of the classical MQ
and a recently developed robust MQ method based on least absolute deviation (MQ-L). Numerical tests show
that MQ-M is comparative to the classical MQ and superior to MQ-L when sample points follow normal and La-
place distributions, and under the presence of outliers the former is more accurate than the latter. A real-world
example of DEM construction using stereo images indicates that compared with the classical interpolation
methods, such as natural neighbor (NN), ordinary kriging (OK), ANUDEM,MQ-L andMQ,MQ-Mhas a better abil-
ity of preserving subtle terrain features.MQ-M replaces thin plate spline for reference DEM construction to assess
the contribution to our recently developedmultiresolution hierarchical classification method (MHC). Classifying
the 15 groups of benchmark datasets provided by the ISPRS Commission demonstrates that MQ-M-basedMHC is
more accurate than MQ-L-based and TPS-based MHCs. MQ-M has high potential for DEM construction.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Digital elevation models (DEMs) are often constructed using
remote-sensing techniques such as light detection and ranging
(LiDAR), interferometric synthetic aperture radar (InSAR) and photo-
grammetry (Ouédraogo et al., 2014; Montealegre et al., 2015; Zhang
et al., 2016). However, due to reasons such as the physical limitation
of data collection sensors, low contrast of terrain textures, multiple re-
flectance, and occlusions, DEMs derived from remote sensing data
often suffer from outliers (Aguilar et al., 2007; Höhle and Höhle,
2009). Spatial outliers are defined as points whose values are unusually
different from their neighbors (Barnett and Lewis, 1994; Chen et al.,
2008; Lu et al., 2011). In the case of DEMs, non-ground objects like veg-
etation, buildings and cars, not completely filtered from the ground
points by classification methods (Sithole and Vosselman, 2004;
Mongus and Žalik, 2012), are considered as outliers. The existence of
data outliers distorts analytical results (Liu et al., 2001). For example,

outliers in DEMs limit accurate recognition of landslide scarps for risk
assessment (Chu et al., 2014).

If the statistical distribution of data is known, outliers can be easily
detected. However, such information is usually unavailable. Noises in
remotely sensed data are caused by various factors, such as low contrast
of terrain textures, improper calibration of instruments, weak laser in-
tensity, and bad weather condition (Sun et al., 2009; Aguilar et al.,
2010). Furthermore, for areas with sharp and complex terrain features,
outlier detection is especially challenging (Fleishman et al., 2005). Nev-
ertheless, somemethods have been developed to deal with spatial out-
liers. Among them, the robust Mahalanobis distance-based method has
been widely adopted. For example, Chen et al. (2008) used this method
to detect spatial outliers in a data set of West Nile virus, and Giménez
et al. (2012) employed it to detect multivariate outliers in positioning
data fromReal TimeKinematic (RTK) Global Navigation Satellite System
(GNSS) Networks. Nurunnabi et al. (2015) proposed a diagnostic princi-
ple component analysis (PCA) combined with Mahalanobis distance to
detect outliers of LiDAR point clouds. Similarly, Gharibnezhad et al.
(2015) introduced three types of robust PCA as a detector of outliers.
However, the robust Mahalanobis distance-based method only uses a
simple linear interpolation to assess the relationship between
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neighborhoods. Thus, its performance is not assured for DEM construc-
tion especially in areas with steep slopes.

For DEM construction, a robust interpolation method is often
needed. Some robust methods for planar surface fitting have been
presented. For example, Fleishman et al. (2005) presented a robust
moving least square technique based on forward search methods
for piecewise smooth surface construction. The random sample
consensus (RANSC) algorithm (Fischler and Bolles, 1981) has been
improved for surface fitting to point clouds under the presence of
outliers (Torr and Zisserman, 2000; Schnabel et al., 2007).
Nurunnabi et al. (2014) employed a fast PCA based on minimum
covariance determinant for robust surface fitting. However, the
aforementioned methods are all for planar surface modeling, and
their effect on producing DEMs with complex terrain characteristics
requires further assessment.

Some classical interpolation algorithms including natural neighbor
(NN), ordinary kriging (OK), Australian National University DEM
(ANUDEM) and multiquadric method (MQ) have been widely used to
derive DEMs from remote sensing data (Lloyd and Atkinson, 2002;
Lloyd and Atkinson, 2006; Bater and Coops, 2009). A series of tests indi-
cated that MQ is excellent in terms of required time, storage, accuracy,
visual pleasantness of the surface, and ease of implementation
(Franke, 1982; Aguilar et al., 2005). However, spatial outliers seriously
affect the performance of MQ, since it is an exact interpolator sensitive
to outliers.

In statistics, several robust estimators have been developed to
decrease the influence of non-normal data distributions, such as

L-estimators, R-estimators and M-estimators (Huber, 2004). The
M-estimators appear the most useful because of their generality, sim-
plicity, and efficiency (Huber, 2004). Based on the M-estimators, this
paper employs an adaptive weight function for MQ with three parts:
null for large errors, one for small errors, and quadric for others. The
aims of this paper are to: (1) develop a robust algorithm of MQ based
on theM-estimators (MQ-M) for DEM construction under the presence
of outliers; (2) assess the robustness ofMQ-M for surfacemodelingwith
simulated data sets; (3) compare the performance of MQ-Mwith those
of the classical interpolationmethods; and (4) evaluate the contribution
of MQ-M.

2. Methods

2.1. Formulations

MQ is an analytical interpolator of representing irregular surfaces
that involve the summation of equations of quadric surfaces located
at significant topographic points (Hardy, 1990). Suppose that a sur-
face is a graph of a functionz= f(x,y), in terms of MQ, it can be
expressed as,

f x; yð Þ ¼
Xm
j¼1

α jp j x; yð Þ þ
Xn
j¼1

β jq r j
� � ð1Þ

where m is the degree of the polynomial; pj(x,y) and αj are the j-th
basis and coefficient of the polynomial; rj is the distance from the in-
terpolated point (x, y) to the j-th data point; q(r) is a basis function;
and βj is the j-th weight of the basis function. For MQ,qðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
,

where c is a shape parameter. Its optimal value depends on the num-
ber and the distribution of data points, the data vector and the preci-
sion of the computation (Rippa, 1999). In our paper, the optimal
value of c is determined by the k-fold cross-validation (CV) tech-
nique (e.g. k = 10). More detailed information can be found in
Section 2.2.

The matrix formulation of Eq. (1) can be expressed as,

f ¼ PαþQβ ð2Þ

Fig. 1. The mathematical surface used in the numerical test. Its formulation is: f(x,y)=3+2sin(2πx)sin(2πy)+ exp(15(x−1)2−15(y−1)2).

Table 1
RMSE values ofMQ-M,MQ-L and the classicalMQunder different error distributions in the
numerical test.

Error distribution MQ-M MQ-L MQ

N (0,0.12) 0.0237 0.5653 0.0244
L (0,0.1) 0.0220 0.0302 0.0234
(1 − θ)N (0,0.12) + θ N (0,32) θ = 0.1 0.0255 0.0446 0.1251
(1 − θ)N (0,0.12) + θ N (0,32) θ = 0.2 0.0302 0.0688 0.1575
(1 − θ)N (0,0.12) + θ N (0,32) θ = 0.3 0.0384 0.0723 0.1729
C (0,0.1) 0.0441 0.0621 0.3727
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