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Empirical models are frequently applied to produce landslide susceptibility maps for large areas. Subsequent
quantitative validation results are routinely used as the primary criteria to infer the validity and applicability of
the final maps or to select one of several models. This study hypothesizes that such direct deductions can be
misleading. The main objective was to explore discrepancies between the predictive performance of a landslide
susceptibility model and the geomorphic plausibility of subsequent landslide susceptibility maps while a
particular emphasis was placed on the influence of incomplete landslide inventories onmodelling and validation
results.
The study was conducted within the Flysch Zone of Lower Austria (1,354 km2) which is known to be highly
susceptible to landslides of the slide-type movement. Sixteen susceptibility models were generated by applying
two statistical classifiers (logistic regression and generalized additive model) and two machine learning
techniques (random forest and support vector machine) separately for two landslide inventories of differing
completeness and two predictor sets. The results were validated quantitatively by estimating the area under
the receiver operating characteristic curve (AUROC) with single holdout and spatial cross-validation technique.
The heuristic evaluation of the geomorphic plausibility of thefinal resultswas supported by findings of an explor-
atory data analysis, an estimation of odds ratios and an evaluation of the spatial structure of the final maps.
The results showed that maps generated by different inventories, classifiers and predictors appeared differently
while holdout validation revealed similar high predictive performances. Spatial cross-validation proved useful
to expose spatially varying inconsistencies of the modelling results while additionally providing evidence for
slightly overfittedmachine learning-basedmodels. However, the highest predictive performanceswere obtained
for maps that explicitly expressed geomorphically implausible relationships indicating that the predictive
performance of amodelmight bemisleading in the case a predictor systematically relates to a spatially consistent
bias of the inventory. Furthermore, we observed that random forest-based maps displayed spatial artifacts. The
most plausible susceptibility map of the study area showed smooth prediction surfaces while the underlying
model revealed a high predictive capability and was generated with an accurate landslide inventory and
predictors that did not directly describe a bias. However, none of the presented models was found to be
completely unbiased.
This study showed that high predictive performances cannot be equatedwith a high plausibility and applicability
of subsequent landslide susceptibility maps. We suggest that greater emphasis should be placed on identifying
confounding factors and biases in landslide inventories. A joint discussion between modelers and decision
makers of the spatial pattern of the final susceptibility maps in the field might increase their acceptance and
applicability.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Landslides are potentially damaging phenomena caused by
interacting natural and anthropogenic factors. However, in many cases

their underlying processes are yet to be fully understood (Crozier,
1989; Carrara et al., 1999; Glade et al., 2005). Within this study, the
term “landslide” is used for the slide-type movement of earth masses
according to Cruden and Varnes (1996) and Dikau et al. (1996).

The likelihood or spatial probability of a landslide event occurring at
a specific site is referred to as landslide susceptibility (Brabb, 1984;
Guzzetti et al., 1999; Glade et al., 2005). Landslide susceptibility maps
display a relative estimate of where landslides are more likely to occur
in the future due to a set of environmental conditions. Thus, they do
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not provide information on the magnitude or temporal occurrence of
upcoming events (Guzzetti et al., 2005).

At a regional scale, statistical classification approaches are most
commonly applied to construct landslide susceptibility maps (Cascini,
2008; Van Westen et al., 2008). They are based on the assumption
that future landslides occur under similar conditions as past landslides
(Carrara et al., 1995; Orme, 2002). Subsequently, an empirical and
generalized relationship between a landslide inventory (response
variable) andmultiple predisposing factors (predictors) is built. Finally,
this relation is then transferred to every unit (e.g. raster cell, terrain
unit) of a study area (Van Westen et al., 2006). Besides “classical”
multiple variable statistical approaches (e.g. logistic regression and
discriminant analysis), more flexible supervised machine learning
techniques (e.g. support vector machines and random forest) have
recently become popular to model landslide susceptibility (Brenning,
2005; Ballabio and Sterlacchini, 2012; Vorpahl et al., 2012; Catani
et al., 2013).

The number of comparative studies in this field demonstrates that
modelers have tomake several choices thatwill influence themodelling
results (Brenning, 2012a). For instance, the selection of the classification
method (Devkota et al., 2012; Schicker andMoon, 2012; Kavzoglu et al.,
2014; Goetz et al., 2015) and predictors (Iovine et al., 2014) as well as
the type and quality of the landslide inventory (Zêzere, 2002; Steger
et al., 2015) highly influence the modelling outcomes. Furthermore,
the final results are also dependent on the spatial resolution of input
data (Catani et al., 2013), the number of terrain units (Guzzetti et al.,
2006; Catani et al., 2013), the applied sampling strategy (Nefeslioglu
et al., 2008; Regmi et al., 2014) and the sample sizes (Heckmann et al.,
2014).

The large number of possible modifications makes an in-depth
validation of the final modelling results even more important. Early
quantitative landslide susceptibilitymodelswere validated heuristically
by comparing mapped landslides of an area with the produced suscep-
tibility maps (Carrara, 1983; Brabb, 1984). Meanwhile, quantitative
validation approaches replaced qualitative procedures to objectively
evaluate the performance of statistical landslide susceptibility models
(Frattini et al., 2010). In this context, Chung and Fabbri (1999) were
among the first to highlight the necessity of a thorough quantitative
evaluation of such predictions. Nowadays, threshold-independent
performance measures like the area under the receiver operating char-
acteristic curve (AUROC) (Brenning, 2005; Beguería, 2006; Frattini et al.,
2010) or the area under the prediction rate curve (Chung and Fabbri,
2003; Remondo et al., 2003) are regularly assessed for an independent
test sample or using cross-validation (Brenning, 2005) to estimate the
predictive performance of a landslide susceptibility model. A review of
the literature revealed that many authors consider these quantitative
estimates as the only decision basis to favor a certain model over
another and/or to deduce the usability of landslide susceptibility
maps. Nevertheless, these conclusions are put in doubt when suscepti-
bility maps with substantially different appearances achieve similar
predictive model performances (Bell, 2007; Sterlacchini et al., 2011;
Steger et al., 2015), putting modelers as well as decision-makers in a
difficult position.

Several studies successfully expanded the quality evaluation of
statistical landslide susceptibility models by quantifying uncertainties
in terms of standard errors and confidence intervals of predicted
probabilities (Rossi et al., 2010; Petschko et al., 2014a; Reichenbach
et al., 2014). However, due to the lack of process-related knowledge
and the assumptions that have to be taken as well as limitations in the
availability of crucial spatial information, many uncertainties inherent
in landslide prediction models are known to be not ascertainable by
means of quantitative procedures (Ardizzone et al., 2002; Guzzetti
et al., 2006; Van Westen et al., 2008). Only a few studies additionally
discuss the appearance of landslide susceptibility maps (e.g. Bell,
2007; Demoulin and Chung, 2007; Sterlacchini et al., 2011; Goetz
et al., 2015).

Themain objective of this study is to examine possible discrepancies
between the geomorphic plausibility of landslide susceptibility maps
and statistical validation results. In particular, this study explores the
effect of different classification methods and input data on the appear-
ance of the final landslide susceptibility maps and associated model
performance measures while a focus is set on the influence of possible
mapping or reporting biases regularly inherent in landslide inventories
(e.g. Brardinoni et al., 2003; Malamud et al., 2004; Guzzetti et al., 2012).

Within this study, geomorphic plausibility is used in analogy to the
concept of biological plausibility regularly addressed in the fields of
medicine and epidemiology to evaluate whether an observed associa-
tion “makes biological sense” (Hoffer, 2003, p.180) or is in apparent
conflict with scientific knowledge (Hill, 1965; Holland, 1986). In this
context, we propose that a geomorphically plausible statistical landslide
susceptibility map should demonstrate neither biases related to input
data nor algorithm based artifacts while a high AUROC value should
verify the success of the underlying prediction. We consider findings
of an exploratory data analysis, odds ratios of modelling results
and the spatial structure of the final maps to support our intrinsically
subjective evaluations.

2. Study area

The study area, the landslide-prone Rheno-Danubian Flysch Zone of
the province of Lower Austria, covers an area of 1,354 km2 and its
elongated shape extents over 149 km from west to east (Fig. 1). The
prevalent alternating sandstone-marl and sandstone-siltstone layers
are a result of large turbidity currents, which episodically transported
large amounts of uncompact sediments from the continental shelf into
the oceanic basin during the Cretaceous to Early Tertiary. In the periods
between this deposition, hemipelagic marls and silts accumulated
resulting in rhythmically interbedded strata. During the Alpidic orogen-
esis, these layers were compressed, thrust towards the north and
uplifted. Thus, the typical undulating Flysch landscape is a result of a
turbulent past (Wessely et al., 2006).

Thewidespread sequences of sedimentary rocks are highly erodible,
deeply incised and well known to be susceptible to landsliding
(Schwenk, 1992; Wessely et al., 2006; Damm and Terhorst, 2009;
Petschko et al., 2014a). The prevalent clayey to silty layers, as well as
specific deeply weathered sandstones (e.g. Mürbsandsteine), are likely
to promote landslides triggered by precipitation and/or snow melt
(Wessely et al., 2006). Typically, these downslope movements are
related to an increase in water saturation inducing consistency changes
of the fine material (e.g. swelling clays) while also water-related
surcharge loading increases shear stresses. Several cases are known
where artificial interventions destabilized slopes of the study area
such as water supply, surcharge, and slope undercutting (Schwenk,
1992; Wessely et al., 2006). According to reports archived in the
Building Ground Registry (BGR) since 1953, the Flysch- and Klippen
Zones are the most landslide-prone areas within Lower Austria. BGR
records show that 42% of all reported landslides were located within
the Flysch Zone (7% of the total province area).

The gentle hilly landscape of the northeast and east is characterized
by mean annual precipitation of b600 mm. Towards the southwest,
the undulating landscape transitions into a low mountain range with
steeper slopes and altitudes higher than 850 m a.s.l. The subalpine
climatic conditions of the southwestern portion of the study area
include mean annual precipitation above 1,300 mm (Skoda and
Lorenz, 2007).

Intensively cultivated pastures cover 33% of the area and arable land
11%. Four percent of the study area is classified as settlements, whereas
particularly towards the west a relatively dense road network links the
prevalent dispersed farms. Large areas, especially in the eastern parts,
are covered by forests. In total 52% of the study area is forested
(deciduous forest= 40% and coniferous forest=12%; Eder et al., 2011).
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