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tems perspectives and intuition suggest that processes or relationships operating at fundamentally different
scales are independent with respect to influences on system dynamics. But how far apart is “fundamentally dif-
ferent”—that is, what is the “vanishing point” at which scales are no longer interdependent? And how do we rec-
oncile that with the idea (again, supported by both theory and intuition) that we can work our way along scale
hierarchies from microscale to planetary (and vice-versa)? Graph and network theory are employed here to ad-
dress these questions. Analysis of two archetypal hierarchical networks shows low algebraic connectivity, indi-
cating low levels of inferential synchronization. This explains the apparent paradox between scale
independence and hierarchical linkages. Incorporating more hierarchical levels results in an increase in complex-
ity or entropy of the network as a whole, but at a nonlinear rate. Complexity increases as a power o of the number
of levels in the hierarchy, with av< 1 and usually <0.6. However, algebraic connectivity decreases at a more rapid
rate. Thus, the ability to infer one part of the hierarchical network from other level decays rapidly as more levels
are added. Relatedness among system components decreases with differences in scale or resolution, analogous to
distance decay in the spatial domain. These findings suggest a strategy of identifying and focusing on the most
important or interesting scale levels, rather than attempting to identify the smallest or largest scale levels and
work top-down or bottom-up from there. Examples are given from soil geomorphology and karst flow networks.
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1. Introduction

In the geosciences we deal with temporal scales ranging from near
instantaneous (e.g., fluid dynamics) to the entire >4 billion year span
of Earth history. We work at spatial scales ranging from particles (and
occasionally molecules) up to planetary. Even within a given domain,
such as soils or fluvial systems, the subject matter incorporates much
of that scale range. Because the same constructs—be they rules or
tools—do not apply across the entire range of scales, we are confronted
with the problem of scale linkage—that is, how to transfer knowledge,
information, relationships, and representations among scales where
the rules and tools are not always the same. The purpose of this paper
is to use graph theory and network analysis to explore changes in over-
all system complexity as the range of scales considered is broadened, to
identify the most promising general strategies for addressing scale link-
age. Specifically, the goal is to determine the rate at which relatedness
among components declines as additional hierarchical scale levels are
considered.

Both spatial and temporal scales are often represented as hierar-
chies, as explicitly recognized in applications of hierarchy theory and hi-
erarchical techniques of spatial analysis. The hierarchical nature of scale
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in Earth systems is also often implicit. In some cases the hierarchies are
functional and spatially nested, and therefore theoretically unambigu-
ous, such as the hierarchy of hillslopes and zero-order drainage basins
to first order to n® order catchments, to subcontinental drainages.
In other cases the hierarchies are additive and equally clear
(e.g., individuals, populations, communities, ecosystems, landscapes).
In still other cases the hierarchical levels are based on conceptual
models and may have fuzzy or arbitrary boundaries, but are widely
used and generally agreed upon within a research community, and
not controversial (e.g., the widely used pedological hierarchy originally
presented by Dijkerman, 1974). Finally, in some cases hierarchies are
imposed by nested scales or resolutions of maps or mapping programs
or pixel sizes.

This paper is concerned with distance in a scale hierarchy in a way
analogous to geographical distances in Tobler's (1970) “first law of ge-
ography.” This states that everything is related to everything else, and
that near things are more related than far things. While neither part of
Tobler's first law is literally true everywhere and always, both are useful
generalizations (Phillips, 2004). The latter part of Tobler's first law
(TFL2) relates to the idea that the closer phenomena are, the more re-
lated or similar they are likely to be. This is a fundamental, venerable
concept of geography, often expressed in terms of distance decay and
spatial dependence, and predates Tobler (1970). The toolbox of spatial
analysts is well stocked with methods for analyzing and modeling
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spatial dependence. A logical corollary of TFL2 is that phenomena that
vary or operate over similar spatial scales are more related than those
that manifest over more different scales. This notion is formalized in hi-
erarchy theory (HT).

Haigh (1987) was apparently the first to propose HT as a tool for ad-
dressing scale linkage in geomorphology. Analytical applications (as op-
posed to as a pedagogic or heuristic device) are relatively rare, but a few
examples exist in geomorphology (e.g., Dikau, 1990; Parsons and
Thoms, 2007; Yalcin, 2008), and many more in landscape ecology (see
reviews by O'Neill et al., 1986; Pelosi et al., 2010; Reuter et al., 2010).
HT is a key conceptual and operational tool for addressing scale linkage
in a geographic information systems (GIS) context (Dikau, 1990; Wu,
1999; Wu and David, 2002) and in geography more generally
(Meentemeyer, 1989). Albrecht and Car (1999), for example, outlined
a hierarchy-theory based approach for scale-sensitive GIS analysis. Hier-
archy theory was applied to the problem of choosing and integrating
among scales in the form of multiresolution remotely sensed data by
Phinn et al. (2003), who used their method to analyze coastal land-
scapes. Bergkamp (1998) applied HT to analysis of runoff and infiltra-
tion interactions with vegetation & microtopography, and Yalcin
(2008) showed that a hierarchy-based method for mapping landslide
susceptibility produced more realistic results than alternative methods.
Hierarchy theory has also been applied to the detection of landscape
boundaries in ecology (Yarrow and Salthe, 2008), and to cross-scale
modeling of nutrient loading in hydrologic systems (Tran et al., 2013).

Hierarchy theory is based on a nested structure of scales or resolu-
tions. At a given level i, patterns and dynamics are affected by factors
and processes operating at that level, at one level below (finer scale;
i — 1), and at one level above (coarser scale; i + 1). Scales two or
more levels away from the scale of observation involve factors that op-
erate too rapidly or at too fine a resolution; or too slowly or at too coarse
a scale, to be observed at i, or effects are entirely mediated by interme-
diate levels. HT is sometimes misunderstood as a tool or conceptual
framework potentially enabling seamless linkage across the entire
range of relevant scales. Actually, HT implies that scale linkage must
be stepwise; as one ascends or descends the “scale ladder”, new factors
and processes become relevant and others cease to be relevant.

The problem of scale linkage has been formally acknowledged for
more than half a century. In 1965 Schumm and Lichty (1965) published
their famous paper on the relationship between temporal scale and (in)
dependence of variables and factors in geomorphology. The same year,
Haggett (1965) articulated the broader problem of scale linkage. Phillips
(1986, 1988) later derived a formal theoretical basis to support Schumm
and Lichty's arguments.

If the “rules” concerning processes and functional relationships were
constant across scales, then scale linkage would be mainly a technical
issue. Such problems crop up, and remain challenging, with respect to
issues such as multiple-resolution models, upscaling, and downscaling.
However, the rules are typically not constant across scales, which is
consistent with intuition, empirical evidence, and dynamical systems
theory (Phillips, 1986, 1988, 2005). Can, for instance, the global bioge-
ography of ants shed light on the biogeomorphic impacts of spatial
foraging strategies or nest site selections of particular ant species (or
vice-versa)? Can the mechanics of flow shear stress acting on a gravel
particle on a stream bed explain the long term evolution of fluvially-
dissected landscapes (or vice-versa)?

If TFL2 holds in the scale domain, then near scale levels are more re-
lated than those farther apart. This implies that as hierarchical scale
levels become increasingly distant, then the dynamics at those scales
become increasingly disconnected.

2. Theory
Assume that a given phenomenon of interest is manifested or influ-

enced at a hierarchy of scale levelsi,i = 1, 2,..., g. For example, flow and
sediment dynamics in a stream channel are influenced by processes and

responses occurring at scales ranging from fluid dynamics to evolution
of large drainage basins. Likewise, environmental carbon dynamics are
controlled by processes occurring at scales ranging from the molecular
to planetary. The scale of interest or observation is denoted as x, x € q,
with 1 £ x < q. S(x) is the system state or condition at scale or level x,
and F;(x) indicates the effects of processes or controls at level i manifest
atx. Thus

a
S®x) = Fi(x) (1
i-1

Denoting the probability of observing effects of a given scale i at the
scale of observation x as p[Fi(x)], then

PIFi())~fx—i| 2)

This is a scale hierarchy analog of distance decay, indicating that ob-
servation of effects from a given scale is partly a function of how closely
situated those scales are in a hierarchy. p[Fi(x)] = 1 when x = i; other-
wise p[F;(x)] is inversely related to the scale difference between x, i.

Hierarchy theory is based on the effects at any given level being ob-
servable only at adjacent levels. Thus, in this framework,

PIFx(X)] = 1:1>p[Fy 1 (x)], p[Fi,1 ()] > 0:and p[F(x)] = O otherwise. (3)

Hierarchy theory is based on a priori definition of hierarchy-based
causality. However, hierarchies may not conform to this ideal, or knowl-
edge may not be sufficient to implement this approach.

2.1. Graph theory approach

The analytical framework here is based on a notion of a system char-
acterized by n key components or variables, which potentially affect,
and are affected by, each other. This is conceptualized here as a simple,
undirected, connected graph. Applications of graph theory in geomor-
phology are reviewed by Heckmann et al. (2015). These interactions
occur at g hierarchical levels. They may repeat at successive scales—for
example, vegetation, soils, landforms, and hydrology all mutually influ-
ence each other at scales ranging from a patch or pedon up through
landscapes or even higher levels. In other cases the key variables and in-
teractions may change along the scale hierarchy. The links between hi-
erarchical levels may vary, as illustrated below.

The overall Earth surface system (ESS) is thus an N-component net-
work, N= 3ngy, with each node or vertex v represented by one of the
components or variables at one of the hierarchical levels, v;(j); i = 1,
2,...0;j=1,2,...,q.

The network can be depicted as a graph with N nodes and m edges or
links representing the connections between the components. The graph
adjacency matrix A has entries of 1 if the row and column components
are connected and O otherwise, with zeroes on the diagonal. Compo-
nents or nodes of this simple, undirected graph are considered con-
nected if they mutually influence each other. The number of edges
associated with a node is its degree.

2.2. Network complexity

A standard measure of graph complexity in algebraic graph theory is
the spectral radius, defined as the (real part of the) largest eigenvalue of
the graph adjacency matrix A, which has N eigenvalues A, such that
A1 2 Ay 2 ... 2 A\y. Therefore the spectral radius = re(A;) (henceforth
simply A4, for brevity's sake).

Other approaches to measuring graph/network complexity are
reviewed by Mowshowitz and Dehmer (2012), with a focus on entropy
based measures. Some of these entropy measures are directly related to
the graph eigenvalues (Geller et al., 2012; Mowshowitz and Dehmer,
2012). Here the simple relationship indicated by Geller et al. (2012) is
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