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Treatments thatminimize soil erosion after largewildfires depend, amongother factors, onfire severity and land-
scape configuration so that, in practice,most of them are applied according to emergency criteria. Therefore, sim-
ple tools to predict soil erosion risk help to decidewhere the available resources should be usedfirst. In this study,
a predictivemodel for soil erosion degree, based on ordinal logistic regression, has been developed and evaluated
using data from three large forest fires in South-eastern Spain. The field data were successfully fit to themodel in
60% of cases after 50 runs (i.e., agreement between observed and predicted soil erosion degrees), using slope
steepness, slope aspect, and fire severity as predictors. North-facing slopes were shown to be less prone to soil
erosion than the rest.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The role of wildfires in shaping the landscapes and ruling the dy-
namics of ecosystems all over the EuropeanMediterranean Basin during
thousands of years has been widely reported or reviewed (Pausas,
2004; García-Ruiz, 2010; Keeley et al., 2012). Plant communities in the
area are adapted to fire, so they usually recover to a pre-fire state,
through successive stages that may take a long time, depending on
the structure of plant communities (Margalef, 1974). One basic condi-
tion for this is a relatively low fire frequency (Pausas, 1999a, 2004). Oth-
erwise, entire landscapes are threatened by degradation processes
affecting plants, soils and water, all of which would mean serious envi-
ronmental degradation.

Fire frequency, either high or low, depends on the ecosystem,
and the different species living in it. For example, we could assume a
high fire frequency for Pinus halepensis if the return interval between
consecutive fires is lower than that required to regenerate the seed
bank (from soil, canopy and/or serotinous cones). P. halepensis blooms
at a relatively early age (less than 10 years), but the production of
serotine cones starts some years later, depending on the environmental
conditions (15–20 years, Pausas, 1999b; Arianoutsou et al., 2002).
Therefore this time could be considered as a threshold between high
and moderate fire frequency for P. halepensis stands. Conversely, a
very low fire frequency would correspond to a time exceeding that of
the entire life of the plant.

Regarding soils, wildfires are known to change soil organic matter
quantity and quality (Knicker, 2007; Pérez-Cabello et al., 2010; Aznar
et al., 2013); deplete soil nutrients directly by volatilization (Johnson
et al., 2009) or indirectly by enhanced post-fire erosion (Soto et al.,
1997); modify microbial populations (Villar et al., 2004; Dangi et al.,
2010); and induce or increase soil water repellency depending on the
temperatures and residence time of fire (Doerr et al., 2006; Doerr and
Shakesby, 2009), thus lowering water infiltration and increasing water
overland flow and runoff (Imeson et al., 1998; Robichaud et al., 2000;
Martin and Moody, 2001; Rulli and Rosso, 2007). Estimates of post-
fire soil erosion rates have been shown to correlate negatively with
the scale of measurement (i.e., plot, hillslope or catchment; Shakesby
and Doerr, 2006; Boix-Fayos et al., 2007; Cantón et al., 2011), because
the ruling erosion mechanisms vary across different spatial scales
(Cameraat, 2002).

Like other regions that undergo periodical wildfires, themain factors
related to high post-fire soil erosion rates along the Mediterranean
basin are, according to the literature, fire severity (Inbar et al., 1997;
Pierson et al., 2002; Varela et al., 2010), plant cover density (Cerdá,
1999; Gimeno-García et al., 2007) and slope (García-Fayos et al., 1995,
2000; García-Fayos and Cerdà, 1997) in terms of both steepness and
aspect (Cerdà et al., 1995; Herranz et al., 1991a). The former two factors
can be linked, as fire severity, as an expression of fuel consumption
and damages to soil (Lentile et al., 2006), is usually higher over dense,
continuously distributed fuels (Ruiz Gallardo et al., 2004; Lentile et al.,
2006). On the other hand, north-facing slopes have been attributed high
soil moisture contents and plant cover densities, which lead to lower
erosion rates (Cerdà et al., 1995; Andreu et al., 2001; Pérez-Cabello
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et al., 2006). Other factors include fire frequency (Campo et al., 2006)
and soil type (Cerdà et al., 2009). In the SpanishMediterranean regions,
soil types are relatively uniform, because they have mostly developed
over limestones or lime-rich parent materials, so that water erosion
rates are more dependent on other factors such as climate, topography
and land use (Imeson et al., 1998), whose influencemay vary from local
to regional scales.

The Universal Soil Loss Equation model (Wischmeier and Smith,
1978), or its improved version (Revised USLE or RUSLE; Renard et al.,
1991) are among the models most commonly used to predict the
mass of eroded soil in different situations. TheWater Erosion Prediction
Project (WEPP; Nearing et al., 1989) has found acceptance in assess-
ments of soil losses after intense rains over burned areas (Robichaud,
2005; Moffet et al., 2007; Dun et al., 2009). These models provide
numerical estimations of the sediment mass eroded after rainfall,
and therefore constitute a useful tool for stakeholders to prioritize
preventive management at locations under high risk (Mallinis et al.,
2009). However, they require a high number of inputs, which may not
be always available to researchers and/or managers. In addition, these
models are intended to work under a wide range of situations, but
under certain particular conditions, they may require some modifica-
tions. For example, many years after the release of the first version of
the WEPP model, some adaptations in it were found necessary to pre-
dict soil erosion in forested areas (Dun et al., 2009), where water dy-
namics is not comparable to that in agricultural lands.

Other kinds of predictive models (usually based upon geographical
or remotely sensed data) classify the erosion risk along an ordinal
scale (Shrimali et al., 2001; Fox et al., 2006; Rahman et al., 2009;
Mutekanga et al., 2010; Zhang et al., 2010), in categories from “no ero-
sion” to “extreme erosion” risk or degree. This is usually achieved by
overlying different thematic layers in GIS and applying different classifi-
cation criteria and/or indexes to the resulting map. Their advantages lie
on their simplicity, flexibility and fewer input requirements to foresee
how intense post-fire soil water erosion can be. Whenever the available
input data are insufficient to obtain quantitative results (Mutekanga
et al., 2010), these models constitute quite a reasonable choice (Ruiz-
Gallardo et al., 2004; Zhang et al., 2010) and may be as useful for deci-
sion taking as the WEPP or RUSLE models (Shrimali et al., 2001).

Regression analysis and, more precisely, ordinal logistic regression
(see below for theoretical basis), can be another way to obtain this
kind of results over an ordinal scale when no quantitative data
(e.g., eroded sediment mass) are available. This situation is common
in field surveys carried out long after a wildfire and/or in areas where
no previous erosion studies such as rainfall simulations and experi-
ments in erosion plots have beenmade. This also applies to fire severity,
often qualitatively estimated in the field (Shakesby et al., 2007; Chafer,
2008). As compared to other semi-quantitative estimations of soil
erosion, the advantages of a model based on ordinal logistic regression
would consist of: (i) deciding which variables to use as predictors,
(ii) using as many variables as desired, and (iii) determining the global
reliability of the model upon a numerical, objective basis.

The use of remote sensed imagery has become increasingly wide-
spread to measure fire effects over burnt areas, usually calculating
pre- and post-fire vegetation indices (e.g., Chuvieco, 2007; Chafer,
2008; De Santis and Mallinis et al., 2009). However, when the facilities
needed for this kind of analysis such as soft/hardware, remotely sensed
data and/or adequately trained staff are not available, visual field esti-
mations or measurements of fire severity are often the only way left
for the assessment.

Several cases of logistic regression applications in soil or forest
science can be found in the literature. Pérez-Cabello et al. (2006) used
binary logistic regression to predict high water erosion risk in burned
areas of the Pyrenees (Northern Spain), using a wide set of predictors
(fire severity, soil parent material, vegetation parameters, topo-
graphic and climatic data) resulting from satellite imagery and field sur-
veys. Stephens and Finney (2002) used logistic regression to predict

conifer tree mortality after prescribed fires in the USA, whereas
Dimitrakopoulos et al. (2010) did so to estimate ignition probability
and moisture of extinction under Mediterranean grassy fuels. Other re-
cent examples include Badía et al. (2011) to determine the probability
of ignition at the forest–urban interface, and Vega et al. (2011) to pre-
dict the post-fire probability of delayed tree mortality.

As compared with binary logistic regression, ordinal logistic regres-
sion models allow the researcher including multiple levels for the
dependent variable, as explained above. Thus, Pérez-Cabello et al.
(2006) applied a binary logistic regression to discriminate only high
vs. non-high erosion risk levels in the Pyrenees. As long as areas under
high erosion risks are the primary concern of environmental managers,
we agree with this approach. However, it might be useful to identify
moderately burnt areas from those just slightly burned or unburned,
in the case of applying suitable, specific soil rehabilitation tasks. Thus,
field assessments for soil degradation and rehabilitation after wildfires
in the Western U.S. by the Burned Area Emergency Rehabilitation
(BAER) team consider three categories of soil erosion risk (low, moder-
ate and high; Robichaud et al., 2000, 2007). The inclusion of more than
two erosion risk levels was related to soil water repellency and soil burn
severity degrees, also divided into three classes/categories (Robichaud
et al., 2000; Miller et al., 2003).

This paper aims to predict fire-induced soil water erosion by means
of ordinal logistic regression, taking fire severity and topographic pa-
rameters as predictors. The model we present here was developed
from individual wildfire events that happened in Albacete (SE Spain).

2. Material and methods

2.1. Ordinal logistic regression

Logistic regression allows building predictive models on a probabi-
listic basis. Like in any other regression analysis, it predicts a response
(dependent) variable, in this case categorical, from one or several
predictor (independent) variables. Categorical predictors can also be
included in the calculations, once turned into binary (or dummy)
variables, with as many of them as classes in the original variable
minus one. Logistic regression applies to a binary dependent variable
(e.g., fire occurrence vs. non-occurrence), with a regression equation
like this:

Logit pð Þ ¼ aþ b1x1 þ b2x2 þ b3x3 þ…þ bnxn ð1Þ

where p is the probability of occurrence of an event, a is the intercept, b1,
b2,…, bn are the regression coefficients and x1, x2,…, xn are the indepen-
dent (predictor) variables. Finally, Logit (p), commonly referred to as
the odds ratio, is defined as:

Logit pð Þ ¼ Ln ½ p= 1−pð Þð �: ð2Þ

Logistic regression can also be applied to dependent variables with
more than two classes, either nominal or ordinal. In the case of an ordi-
nal dependent variable,we calculate the probability of a given event and
all others ordered before it. Thus, if the dependent variable Y takes the
values 2, 1 and 0, meaningful in terms of order or preference, we first
calculate p(Y ≤ 2), p(Y ≤ 1) and p(Y = 0), and then p(Y = 2) =
p(Y≤ 2)− p(Y≤ 1), and p(Y=1)= p(Y≤ 1)− p(Y=0). If the values
of the dependent variable denote a difference but not necessarily an
order or preference, then the regression model is multinomial instead
of ordinal. An ordinal logistic regression model with multiple (X1, …,
Xn) predictors can be written as:

Ln θ j

� �
¼ α j–β1X1−…−βnXn ð3Þ

where θj = prob(score ≤ j)/prob(score N j), αj is the intercept for the
logit j, and βn is the regression coefficient for the independent variable
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