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In this study, we tested Random Forest (RF) with semantic tie points to classify discrete landforms, which would
be ultimately useful for increasing the accuracy of shaded relief representations.We therefore focused our efforts
on the following landforms: rock outcrops, screes, alluvial fans and low relief areas.
A characteristic of RF, which makes it a good algorithm for geomorphological mapping, is its ability to generate
thousands of classification trees. Each tree provides a classification and the value classified by the majority of
the trees is the final output of the algorithm. Furthermore, having multiple classifications provides a measure
of uncertainty. This is very important because it gives practitioners an idea of areas where the method is less
accurate, which would require more effort in terms of sampling or surveying.
This method was applied in two mountainous areas of Switzerland, the first where we trained and calibrated it
and the second where we used it for classification. The results were validated using existing geomorphological
maps, and they show that this method can obtain good training accuracy with a relatively small starting dataset.
Moreover, both calibration and classification present a percentage of agreement with existing geomorphological
maps of over 70%. Somegeomorphological classes, alluvial fans and screes, present a classification accuracy that is
lower than the calibration, which is in line with previous tests found in the literature. However, for other classes,
i.e., rock outcrops and low relief areas, the accuracy increases, suggesting that this method can be employed
extensively and relatively securely for these landforms.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Advances in remote sensing have increased the availability of high-
resolution digital elevationmodels (DEMs). These data can be extreme-
ly useful for environmental studies, but they need processing in order to
provide insights regarding the evolution of the landscape. According
to Jasiewicz and Stepinski (2013), two fundamentally different ap-
proaches are available to obtain these insights: shaded relief maps and
the classification of landforms and landform elements.

With shaded relief maps, the analysis is carried out by a cartogra-
pher, who is able to recognise and highlight all the important features
in the landscape. This implies a certain amount of terrain generalization,
standardised by Imhof (1982), which is necessary to reduce visual com-
plexity by removing unwanted details and accentuating key landforms.
The problem with this technique is that it is highly subjective and the
resulting map can be changed considerably depending on the skill,
experience and style of the cartographer (Leonowicz et al., 2010).

However, automatic relief shading, even though it is faster and cheaper
to perform, is generally considered inferior to manual shading, particu-
larly in mountain landscapes (Jenny, 2001). The reason is evident in
medium- and small-scale relief shading, where high DEM resolutions
create excessive levels of detail that obscure the macrotopography and
decrease the readability of the map, thus reducing the amount of infor-
mation that can be discerned from it (Leonowicz et al., 2012).

With the second approach, the analysis is performed by classifying
landforms and landform elements. Several methods exist in the litera-
ture to achieve this objective in a quantitative and automatic way (for
a review see Smith et al., 2011). These can be classified into two main
categories: unsupervised and supervised. The first generally aims at
identifying morphometric classes from particular combinations of
derivatives, using the ‘geometric signatures’ approach first proposed
by Pike (1988). It includes methods based purely on land surface pa-
rameters (LSP; e.g. Pike, 1988; Dikau, 1989; Wood, 1996; Weiss, 2001;
Florinsky, 2002; Jasiewicz and Stepinski, 2013) or methods based on
clustering (e.g., Zadeh, 1965; Irvin et al., 1997; Burrough et al., 2000;
MacMillan et al., 2000; Robinson, 2003; Deng et al., 2006). The second
category relies on training samples to determine key landform features
that are then used to classify wider landscapes; these methods are
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referred to as supervised classifications. This includes object-based
image analysis methods (van Asselen and Seijmonsbergen, 2006;
Anders et al., 2011; Seijmonsbergen et al., 2011) and geostatistical
algorithms (Brown et al., 1998; Brenning, 2005; Brenning et al., 2007;
Marmion et al., 2008).

In this research, we used Random Forest (RF, Breiman, 2001) to
perform the geomorphological classification. RF is a particular form
of supervised classification that is already widely used in the scien-
tific community for different topics, such as digital soil mapping
(e.g., Grimm et al., 2008; Wiesmeier et al., 2011), ecology (e.g. Prasad
et al., 2006; Cutler et al., 2007), and chemistry and biology (Svetnik
et al., 2003; Díaz-Uriarte and De Andres, 2006). It is also popular in
the remote sensing community (e.g. Ham et al., 2005; Pal, 2005; Chan
and Paelinckx, 2008) because it can generate a reliable classification of
multiple features and is robust against noise (Gislason et al., 2006).
Moreover, RF is able to weight predictors, giving a classification of the
relative importance of each of them during the training phase. In addi-
tion, because RF creates several hundred regression trees, it can be used
to determine the local uncertainty in each classified pixel of the target
raster, potentially helping to identify areas where a more detailed anal-
ysis is needed.

RF is relatively new to geomorphology. Marmion et al. (2008) tested
several statistical and geostatistical algorithms aiming at classifying
periglacial landforms in Finland. They reported that RF had the best
calibration performance, but it was among the worse for classification
accuracy. Stumpf and Kerle (2011) tested RF for classifying landslides
and obtained prediction accuracies between 70% and 80%. These are
contradictory results and it may be interesting to test RF in classifying
other landforms to determine its ability to provide a way to create a
classified geomorphological map quickly and cheaply. In this work, we
focused on landforms deemed important for shaded relief mapping,
i.e. rock outcrops, screes, alluvial fans and low relief areas.

Supervised algorithms such as RF generally require numerous train-
ing samples to achieve their maximum potential. By looking at previous
examples, the number of training samples varies widely. Grimm et al.
(2008) used 165 training locations over an area of 15 km2 for predicting
soil carbon;Wiesmeier et al. (2011) used 120 samples to map the same
soil property over an area of 3600 km2. However, remote sensing classi-
fications are generally performed with many more training locations.
For example, Gislason et al. (2006) used more than a thousand samples
for land cover mapping (the authors did not specify the extent of the
study area), and Cutler et al. (2007) used more than 8000 observations
for an ecological classification covering an area of 220 km2.

The need for many training samples is certainly a drawback for
the use of supervised classifications in geomorphological studies. In
particular, if no other sources of information exist for the study
area, the training locations need to be digitised manually from re-
motely sensed images and this can be a tedious task (Montoya-
Zegarra et al., 2013). In this work, we proposed the use of a technique
recently developed by Montoya-Zegarra et al. (2013). The technique
is based on the use of neighbouring data (semantic tie points) to en-
large the training dataset while keeping the number of training loca-
tions to a minimum.

Based on the brief literature review above, we demonstrate two
things in this work: 1) by including semantic tie points, we can de-
crease the size of the training dataset required to perform a classifi-
cation with RF, while keeping the accuracy at high levels; and 2)
the decrease in accuracy of RF from the calibration to the classification
areas, as identified by Marmion et al. (2008), is highly dependent on
the type of landforms.

We tested this method in two areas of Switzerland. In the first area,
we selected a limited number of training samples and then calibrated
the algorithm by classifying a subset of the area. Subsequently, we
shifted our attention to another area with different geomorphological
characteristics and, using the same training model as before, we tested
the possibility of employing this method extensively.

2. Materials and methods

2.1. Procedure

This research was divided into the following three steps:

– Supervised methods require training. We started by testing the
method over an area where no previous geomorphological data
were present. In this situation, the user needs to create a training
set by identifying locations where the presence of a particular
landform is certain. The optimal number of samples is obtained by
looking at the internal RF validation.

– The method is subsequently calibrated by classifying a subset of the
training area.

– The test ends with the use of the algorithm to perform a classifica-
tion in an external area. This validates the methodology and verifies
if it can be extensively employed.

2.2. Training set

Supervised techniques rely on training to achieve good classification
accuracy. In this study, as we assumed that no prior geomorphological
data were available, the user needs to provide a limited set of locations
where the presence of a particular landform is certain. In this way, the
algorithm can be trained by analysing the relationships between each
landform and the predictors, such as geomorphometric variables and
data derived from aerial images.

The accuracy of supervised algorithms is directly proportional to the
dimension of the training set; the more cases you have, the more accu-
rate the classification is. However, manually extracting lots of training
points can be time-consuming. For this reason,we tested a newly devel-
oped methodology for the object-based classification of aerial images
based on semantic tie points (Montoya-Zegarra et al., 2013). These are
neighbouring cells around the training point. The user selects a location
where the presence of a landform is certain, and the algorithmautomat-
ically samples 25 cells around that location (on a 5 × 5 cell window),
extracting predictors that are then associated with the same landform.
This way we can obtain a significantly higher number of predictors,
while avoiding the process of labelling all of them.

By including these locations, we can increase the number of predic-
tors associatedwith each training location. This should also increase the
training accuracy by allowing the algorithm to be trained with more
cases. Moreover, by including semantic tie points, we can decrease the
impact of DEM noise, which may seriously affect the accuracy of
machine learning algorithms, particularly in low relief areas (Cavazzi
et al., 2013).

2.3. Classification trees and Random Forest

This experiment is based upon the classification of the landscape
into major landforms, which are generally characterised by particular
predictor patterns (e.g., Pike, 1988; Iwahashi and Pike, 2007). The com-
plex evolution of the landscape in the two study areas implies that it is
very difficult to find clear morphometric signatures for each landform.
For this reason, we tested classification trees that provide a statistical
way to find patterns that can help with the geomorphological
classification.

Classification trees, such as the popular CART (Breiman et al., 1984),
are trained on a set of locations for which geomorphological classes can
be compared with a set of predictors. These algorithms were developed
with the purpose of finding patterns between landforms and predictors.
These patterns can then be used to determine the geomorphological
classification in areas where we do not have any direct observation.
Classification trees achieve this objective by splitting the dataset accord-
ing to rules that maximise the variance between subsets. Each split of
the data is performed by testing different combinations of predictors

153F. Veronesi, L. Hurni / Geomorphology 224 (2014) 152–160



Download English Version:

https://daneshyari.com/en/article/4684428

Download Persian Version:

https://daneshyari.com/article/4684428

Daneshyari.com

https://daneshyari.com/en/article/4684428
https://daneshyari.com/article/4684428
https://daneshyari.com

